人工智能-作业4:CNN - 卷积

本文深入探讨卷积的概念,包括卷积核、多通道、特征图和特征选择。举例介绍了不同卷积核如边缘检测、锐化和模糊在图像处理中的作用,并展示了实际效果。通过调整参数观察了更明显的变化,还提到了浮雕滤波器为图像带来的3D阴影效果。
摘要由CSDN通过智能技术生成

一、简单描述卷积、卷积核、多通道、特征图、特征选择概念。

卷积:
卷积是两个变量在某范围内相乘后求和的结果,卷积是通过两个函数 [公式] 和 [公式] 生成第三个函数的一种数学算子,表征函数 f()与 f() 经过翻转和平移的重叠部分函数值乘积对重叠长度的积分。
卷积核:
卷积核就是图像处理时,给定输入图像,输入图像中一个小区域中像素加权平均后成为输出图像中的每个对应像素,其中权值由一个函数定义,这个函数称为卷积核。
多通道:
多通道卷积
在这里插入图片描述
多通道输出:
在这里插入图片描述
特征图:
由图像提取出的特征值组成的方图
特征选择:
从已经有的特征中选择若干有效的特征使图片最优

二、探究不同卷积核的作用,研究背后的原理。

1.经典卷积核,实现灰度图的边缘检测、锐化、模糊****
[-1, -1, -1]
[-1, 8, -1]
[-1, -1, -1]

在这里插入图片描述
边缘检测:

sobel_kernel = np.array([[-1, -1, -1],
                         [-1, 8, -1],
                         [-1, -1, -1]], dtype='float32')  # 定义轮廓检测算子
sobel_kernel = sobel_kernel.reshape((1, 1, 3, 3))  # 适配卷积的输入输出

在这里插入图片描述
锐化:

sobel_kernel = np.array([[0, -1, 0],
                         [-1, 5, -1],
                         [0, -1, 0]], dtype='float32')  # 定义轮廓检测算子
sobel_kernel = sobel_kernel.reshape((1, 1, 3, 3))  # 适配卷积的输入输出

在这里插入图片描述
模糊:

sobel_kernel = np.array([[1, 2, 1],
                         [2, 4, 2],
                         [1, 2, 1]], dtype='float32')  # 定义轮廓检测算子
sobel_kernel = sobel_kernel / 16
sobel_kernel = sobel_kernel.reshape((1, 1, 3, 3))  # 适配卷积的输入输出

在这里插入图片描述
三、调整参数,观察更多变化
上面这些变化可能不太明显,接下来尝试改变参数等使变化更加明显。
更换了一个边界更清晰的图片如下:
在这里插入图片描述
锐化:
在这里插入图片描述
模糊:
在这里插入图片描述
调整参数之后确实变化更加明显了。
尝试更多类型的卷积核:
浮雕滤波器:
可以给图像一种3D阴影的效果。
只要将中心一边的像素减去另一边的像素就可以了。这时候,像素值有可能是负数,我们将负数当成阴影,将正数当成光
卷积核:在这里插入图片描述

在这里插入图片描述
还是挺有意思的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值