💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
平行板电容器中的二维电势/场,通过对平行板电容器的二维拉普拉斯方程进行数值求解。使用有限差分法数值求解平行板电容器的二维拉普拉斯方程,收敛性通过以6.00为公差的范数准则得到,迭代次数N=611。在正方形平行板电容器中的二维电势/场:通过使用有限差分法对平行板电容器的二维拉普拉斯方程进行数值求解,收敛性通过以6.00为公差的范数准则得到,迭代次数N=611。
介绍:
平行板电容器[1]是一种用于在电场中存储能量的电子设备,电容器的设计有许多类型和几何形状,本文重点讨论的是具有方形平行板且板之间有真空的电容器,如图1所示。
我们对解决二维拉普拉斯方程感兴趣,以获得两个板周围的电势和电场的解,因此我们设定了一些问题的参数:
让我们考虑一个边长为L=200毫米的正方形盒子,里面有两个长度为l=160毫米的板,两个板是平行的,相互间隔为d=80毫米,第一个板的电位或电压为U1=220伏特,而第二个板带有电荷,带电量为V2=-220伏特,在这个例子中,我们假设板之间的电荷密度为零ρ=0 C.m−2。
在经典静电学中,电场与电势之间的关系通过笛卡尔坐标的方程来描述。详细文档见第4部分。
📚2 运行结果
部分代码:
fprintf(' Number of iterations N=%d\n',count);
% plot the results
surf(U);shading interp; colorbar;
xlabel(' Lx');
ylabel(' Ly');
zlabel(' Potential, in Volts');
title (' Electric potential of the parralel plate Capacitor');
view(-54,6);
% Electrostatic field
[Ex,Ey]=gradient(U);
figure, contour(U,'LineWidth',2);
hold on, quiver(Ex,Ey,4), hold off
title(' Electrical field of the parallel plate Capacitor in static case');
%Thrid figure for better viusalization of the electric field
figure,contour(U,'LineWidth',2); hold on, quiver(Ex,Ey,4), hold off;
zoom(3);
axis([10 40 130 160]);
xlabel(' Lx'), ylabel('Ly'), title(' Electrcial field :Zoom x4 Left Corner of the 1st plate ')
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
🌈4 Matlab代码、文档
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取