改进的数值解析法PCB热建模方法,考虑辐射传热及元件温度计算(Matlab代码实现)

      💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据、文章


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

首先,简要回顾了关于层压印刷电路板(PCB)结构稳态热分析的数值-解析耦合方法的前期工作。该方法将温度的傅立叶级数解析解与有限体积法相结合,用于对PCB进行热建模。为了进一步模拟带有元件的PCB,使用元件的热阻参数来关联元件温度与耦合方程中的变量数组。为了进一步考虑PCB与环境之间的辐射传热,提出了一种迭代方法。在此迭代过程中,可更新每个表面单元及每个元件的辐射等效换热系数。此外,为了提高效率,该耦合方法中集成了多重网格策略,在金属层和PCB表层区域生成三级离散单元。为了验证迭代方法的有效性,对比了一个简单单层结构模型与在COMSOL Multiphysics中构建的模型。还给出了在考虑辐射传热条件下,一个虚拟DC-DC电源PCB的建模结果并进行了讨论,基于Richardson外推法大约估算了建模精度。

印刷电路板(PCB)的热建模已被视为评估PCB热扩散能力及估算元件温度的有效途径[1]-[14]。历史上,人们研究了一些分析PCB结构有效导热系数的建模方法,例如提取PCB集总导热系数的方法[1,2]以及基于PCB布线图,提取笛卡尔坐标系中正交异性(x、y、z方向)离散导热系数的方法[3,4]。近年来,也有人研究了PCB的等效热阻模型[5]-[7]。针对IC下方PCB过孔和散热垫的布局优化,提出了两种分析型热阻模型和设计优化方法[5]。基于纳米卫星PCB的层间等效热阻,提出了PCB热分析的详细及简化建模方法[6,7]。

另一方面,Mentor的FloTHERM和ANSYS的Icepak也已开发用于PCB热仿真。FloTHERM主要依据与PCB铜覆盖率相关联的有效导热系数,以及基于超过140种PCB构型分析的经验方法[8,9]。但这种方法可能导致元件温度略有高估[9]。

Icepak基于有限元方法(FEM)。基于FEM的软件通常被认为是计算精度较高,但通常需要对结构进行全面离散化,可能会影响运算效率[10]。

本文介绍的热建模方法最初是在[11,12]中提出的,基于温度的傅立叶级数解析解与基于FVM(有限体积法)的离散化耦合。采用这种耦合方法,不必对层压PCB结构进行全面离散,只需对金属层和表面区域进行处理。同时也考虑了PCB轨道中焦耳热的电热分析[11]-[13]。基于这种耦合方法,最初在MATLAB中开发了一个采用笛卡尔坐标均匀网格的测试求解器[12,13]。耦合方法的准确性已通过与COMSOL的建模比较得到验证[12]-[14]。第二部分将简要介绍耦合方法。

然而,建模方法的操作效率受到均匀网格数值离散化的重要影响。因此,引入了多重网格方法。第三部分将解释三层多重网格的生成步骤及三层金属单元的可能相邻情景。

另一方面,使用元件的热阻参数来考虑元件的覆盖情况及其对PCB中热扩散的贡献,并估计其温度。元件的温度与耦合矩阵方程中温度和热流变量数组相关联。相应的数学处理在第四部分给出。

温度的傅立叶级数解析解主要基于对PCB表面平均传热系数(HTC)的假设[13,14]。但在这种简化的假设下,模型中不能直接分析辐射热传递。因此,作为另一项改进,第五部分讨论了一种关联HTC和辐射热传递的迭代方法。第六部分与COMSOL模型相比,给出了方法的验证。

利用改进的耦合方法对一个虚拟的DC-DC电源PCB进行了建模。电路和PCB由在线工具TI WEBENCH® Power Supply自动生成。PCB的热参数和三层离散映射可在第七部分的第一节中找到,同时也可以发现均匀网格与多重网格操作负担的比较。第七部分的第二节给出了建模结果并进行了分析。基于Richardson外推法,也讨论并约算了建模结果的准确性。全部文章见第4部分。

📚2 运行结果

全部运行结果:

链接:https://pan.baidu.com/s/1mr1H1oIGb4djQtg_p1cbCQ 
提取码:5e5p 
--来自百度网盘超级会员V5的分享

部分代码:


% The total radiation power is composed of three parts, including the part from the components,
% the part from the top metal layer, and the part from the insulating region of the top side.
function [qRS21,qRM,qRI,qRall]=Radiationbylaw(sigma,Sc,Tc,Ta,dc2,TMu,TIu,LF16,LF4,LPRP,PFMAP,LINS16,LINS4,LINS)
% The part from the components was denoted by the array of qRS21:
qRS21=zeros(21,1);
qRS21(1:3)=sigma*0.9*Sc(1:3).*((Tc(1:3)+273.15+Ta).^4-(273.15+Ta)^4);  
% the part from M1, D1, and U1
qRS21(4)=sigma*0.9*Sc(4)*((Tc(4)+273.15+Ta).^4-(273.15+Ta)^4); 
% the part from L1 if zero R胃Jtop of the inductor is assumed
qRS21(5)=sigma*0.88*Sc(5)*((Tc(5)+273.15+Ta).^4-(273.15+Ta)^4); 
% the part from Rfb2
qRS21(6:14)=sigma*0.94*Sc(6:14).*((Tc(6:14)+273.15+Ta).^4-(273.15+Ta)^4);
% the part from ceramic capacitors
qRS21(15)=sigma*0.88*Sc(15).*((Tc(15)+273.15+Ta).^4-(273.15+Ta)^4); 
% the part from Rfb2
qRS21(16:21)=sigma*0.88*Sc(16:21).*((Tc(16:21)+273.15+Ta).^4-(273.15+Ta)^4);
% the part from SMD resistors

% The part from the top metal layer was denoted by the array of qRM:
qRM=zeros(LPRP,1);
qRM(1:LF16)= sigma*0.9*16*dc2*((TMu(1:LF16)+273.15+Ta).^4-(273.15+Ta)^4); 
qRM(LF16+1:LF16+LF4)=sigma*0.9*4*dc2*((TMu(LF16+1:LF16+LF4)+273.15+Ta).^4-(273.15+Ta)^4); 
qRM(LF16+LF4+1:LPRP)=sigma*0.9*dc2*((TMu(LF16+LF4+1:LPRP)+273.15+Ta).^4-(273.15+Ta)^4); 
qRMTr=qRM(LF16+LF4+1:LPRP);
qRMTr(PFMAP)=0;  % exclude the calculation of radiation power of the metal cells covered by the component
qRM(LF16+LF4+1:LPRP)=qRMTr;

% The part from the insulating region was denoted by the array of qRI:
qRI=zeros(LINS,1);
qRI(1:LINS16)=sigma*0.9*16*dc2*((TIu(1:LINS16)+273.15+Ta).^4-(273.15+Ta)^4); 
qRI(LINS16+1:LINS16+LINS4)=sigma*0.9*4*dc2*((TIu(LINS16+1:LINS16+LINS4)+273.15+Ta).^4-(273.15+Ta)^4); 
qRI(LINS16+LINS4+1:LINS)=sigma*0.9*dc2*((TIu(LINS16+LINS4+1:LINS)+273.15+Ta).^4-(273.15+Ta)^4); 

% The total radiation power was calculated as follows:
qRall=sum(qRS21)+sum(qRM) +sum(qRI);

结论

针对印刷电路板(PCB)稳态热分析的数值-解析耦合方法得到了进一步的改进,以便纳入辐射热传递的分析、预测元件的温度信息,并考虑到元件在PCB表面覆盖情况的实际影响。相较于单一均匀网格,采用了多重网格策略生成三级离散单元,大大减少了运算负担。通过使用元件的RθJC和RθJC(top),可以将其结温和平均壳顶温与层表面的温度分布关联起来。最后,作为整体的PCB层叠结构和元件的热行为得以建模。这种数值-解析建模策略有可能应用于其他工程问题的分析中。

所提出的迭代方法将辐射热传递与各个离散单元及元件壳顶的辐射等效换热系数相关联。通过对简易单层结构的测试求解器与COMSOL模型之间的结果差异较小的事实,验证了迭代方法机制的可行性。迭代方法可能进一步用于解决其他依赖温度的热传递问题。

基于虚拟DC-DC电源PCB的建模结果,进一步验证了改进建模方法的一致性、稳定性、收敛性和守恒性。当然,如果元件制造商能更清晰、全面地声明热参数,那么PCB的热模型可以构建得更加准确。热阻较低且散热量小的元件可主要视为促进PCB内热量扩散的热传导路径。另一方面,PCB中金属层的热量扩散作用显著,相比于元件,PCB表面可能是辐射热传递的主要贡献者。因此,缩小PCB尺寸不仅取决于布局的电气设计规则,也需要考虑热分析的影响。

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]Y. Zhang, "Improved Numerical-Analytical Thermal Modeling Method of the PCB With Considering Radiation Heat Transfer and Calculation of Components’ Temperature," in IEEE Access, vol. 9, pp. 92925-92940, 2021, doi: 10.1109/ACCESS.2021.3093098.

🌈4 Matlab代码、数据、文章

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值