【负荷预测】基于CEEMDAN-CNN-LSTM的负荷预测研究(Python代码实现)

                                        💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、引言

二、研究方法

1. 数据预处理

2. CEEMDAN分解

3. CNN特征提取

4. LSTM预测模型

5. 结果集成

三、实验结果与分析

1. 数据集与评估指标

2. 实验结果

3. 分析与讨论

四、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Python代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于CEEMDAN-CNN-LSTM的负荷预测研究

一、引言

随着智能电网的快速发展和电力市场的日益成熟,准确的负荷预测对于电力系统的稳定运行、电力市场的合理调度以及能源的高效利用具有重要意义。然而,电力负荷数据具有高度的非线性、非平稳性和随机性,传统的预测方法往往难以达到理想的预测效果。因此,本文提出了一种基于CEEMDAN(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,自适应噪声完备集合经验模态分解)、CNN(Convolutional Neural Network,卷积神经网络)和LSTM(Long Short-Term Memory Network,长短期记忆网络)的负荷预测模型,旨在提高负荷预测的精度和稳定性。

二、研究方法

1. 数据预处理

首先,对原始负荷数据进行清洗和预处理,包括去除异常值、填补缺失值、归一化处理等步骤,以保证数据的质量和一致性。

2. CEEMDAN分解

利用CEEMDAN算法对预处理后的负荷数据进行分解,得到一系列相对平稳的本征模态函数(IMF)分量和一个残差分量。这些分量代表了负荷数据在不同频率尺度下的特征信息,有助于后续模型更好地捕捉数据的内在规律。

3. CNN特征提取

针对每个IMF分量,使用CNN模型进行特征提取。CNN通过卷积层、池化层等结构能够自动学习数据中的局部特征,并将其转化为更高层次的抽象表示。这些特征将为后续的LSTM预测模型提供有力的输入。

4. LSTM预测模型

将CNN提取的特征作为LSTM预测模型的输入,利用LSTM的记忆能力和时序建模能力进行负荷预测。LSTM通过其独特的“门”结构能够捕捉数据中的长期依赖关系,从而提高预测的准确性。

5. 结果集成

将各个IMF分量的LSTM预测结果进行叠加重构,得到最终的负荷预测值。同时,可以根据需要加入残差分量的预测结果,以进一步提高预测精度。

三、实验结果与分析

1. 数据集与评估指标

本文采用某地区电力公司的实际负荷数据作为实验数据集,并使用平均绝对百分比误差(MAPE)作为评估模型预测性能的指标。MAPE越小,表示模型的预测精度越高。

2. 实验结果

通过实验对比发现,基于CEEMDAN-CNN-LSTM的负荷预测模型在预测精度上明显优于其他传统预测模型(如BP神经网络、SVR等)。具体而言,该模型能够更准确地捕捉负荷数据中的非线性、非平稳性和随机性特征,从而提高预测的准确性和稳定性。

3. 分析与讨论

CEEMDAN分解有效地降低了原始数据的复杂性和噪声水平,使得后续模型能够更容易地捕捉数据的内在规律。CNN特征提取为LSTM预测模型提供了更加丰富和有效的输入特征,进一步提高了模型的预测能力。LSTM预测模型则利用其独特的记忆能力和时序建模能力,实现了对负荷数据的高效预测。

四、结论与展望

本文提出了一种基于CEEMDAN-CNN-LSTM的负荷预测模型,并通过实验验证了其有效性和优越性。未来,可以进一步探索和优化该模型的参数设置和预测策略,以进一步提高预测精度和泛化能力。同时,也可以将该模型应用于其他领域的预测问题中,如金融、交通等,以拓展其应用范围和价值。

📚2 运行结果

部分代码:

table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2'])
for i in range(n_out):
    # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标
    actual = [float(row[i]) for row in Ytest]  #一列列提取
    # 从测试集中提取实际值。
    predicted = [float(row[i]) for row in predicted_data]
    # 从预测结果中提取预测值。
    mse = mean_squared_error(actual, predicted)
    # 计算均方误差(MSE)。
    mse_dic.append(mse)
    rmse = sqrt(mean_squared_error(actual, predicted))
    # 计算均方根误差(RMSE)。
    rmse_dic.append(rmse)
    mae = mean_absolute_error(actual, predicted)
    # 计算平均绝对误差(MAE)。
    mae_dic.append(mae)
    MApe = mape(actual, predicted)
    # 计算平均绝对百分比误差(MAPE)。
    mape_dic.append(MApe)
    r2 = r2_score(actual, predicted)
    # 计算R平方值(R2)。
    r2_dic.append(r2)
    if n_out == 1:
        strr = '预测结果指标:'
    else:
        strr = '第'+ str(i + 1)+'步预测结果指标:'
    table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%'])

return mse_dic,rmse_dic, mae_dic, mape_dic, r2_dic, table
# 返回包含所有评估指标的字典.

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]肖白,高文瑞.基于CEEMDAN-LSTM的空间负荷预测方法[J].电力自动化设备, 2023, 43(3):7.

[2]郭权杰.基于CEEMDAN-LSTM模型的短期负荷预测研究与应用[D].天津理工大学,2023.

[3]冯建强,宋昆仑.基于CEEMDAN-LSTM的桥梁变形时间序列预测研究[J].地理空间信息, 2023, 21(7):40-43.

[4]王清亮,代一凡,王旭东,等.基于ICEEMDAN-LSTM-BNN的短期光伏发电功率概率预测[J].西安科技大学学报, 2023, 43(3):593-602.

🌈4 Python代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值