基于粒子群算法的电动汽车充电动态优化策略研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

一、引言

二、电动汽车充电负荷估算

三、光伏出力曲线和常规用电负荷

四、电动汽车优化充电模型

1. 目标函数

2. 约束条件

五、粒子群算法求解

1. 粒子群算法原理

2. 改进的自适应变异粒子群算法

3. 算法求解过程

六、实验结果与分析

七、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


💥1 概述

电动汽车充电动态优化策略是指通过优化算法对电动汽车充电过程进行动态调整,以最大程度地提高充电效率、降低充电成本、减少充电时间等目标。粒子群算法是一种基于群体智能的优化算法,可以应用于电动汽车充电动态优化策略的研究中。

在基于粒子群算法的电动汽车充电动态优化策略研究中,首先需要建立电动汽车充电过程的数学模型,包括电池特性、充电设备特性、充电站特性等方面的参数。然后,将充电过程的优化目标转化为数学优化问题,比如最小化充电成本、最小化充电时间、最大化充电效率等。

接下来,利用粒子群算法对充电过程进行优化调整。粒子群算法通过模拟鸟群觅食的行为,不断调整粒子的位置和速度,以寻找最优解。在电动汽车充电动态优化策略中,可以将每个粒子看作一个充电方案,粒子的位置和速度表示充电方案的参数,比如充电功率、充电时长等。通过不断迭代优化,粒子群算法可以找到最优的充电方案,以实现充电过程的优化目标。

最后,通过仿真实验和实际验证,验证基于粒子群算法的电动汽车充电动态优化策略的有效性和可行性。通过对比不同优化算法的结果,可以进一步验证粒子群算法在电动汽车充电动态优化中的优势和适用性。

基于粒子群算法的电动汽车充电动态优化策略研究可以为电动汽车充电过程的智能化和高效化提供重要的理论和方法支持,有助于推动电动汽车充电技术的发展和应用。

一、引言

随着电动汽车的普及,其充电问题日益凸显。如何优化电动汽车的充电策略,提高充电效率,降低充电成本,成为当前研究的热点。粒子群算法作为一种智能优化算法,具有全局搜索能力强、收敛速度快等优点,在电动汽车充电优化领域具有广泛的应用前景。

二、电动汽车充电负荷估算

电动汽车的充电负荷主要与电动汽车起始充电时刻和充电时长相关。起始充电时刻由电动汽车用户的到家时间决定,而充电时长则与电动汽车的行驶里程和充电倍率相关。通过对电动汽车用户到家时间的统计分析,可以得到用户到家时间分布规律,进而估算电动汽车的充电负荷。

三、光伏出力曲线和常规用电负荷

光伏出力曲线主要与光照强度和温度相关,在实际条件下主要表现为天气变化和季节性变化。通过对光伏发电系统功率输出数据的统计和处理,可以得到不同季节的光伏发电系统满发出力曲线。同时,居民小区的负荷曲线主要和小区的用户规模相关,通过对居民楼实际负荷数据的统计,可以得到夏季和冬季每户平均家庭常规用电负荷曲线。

四、电动汽车优化充电模型

1. 目标函数

电动汽车充电优化的目标函数主要包括平抑小区配电网的负荷波动和降低电动汽车用户充电电费。以分钟为单位,将一天分为1440分钟,分别计算以平抑负荷波动和用户电费最少为目标函数的优化结果。然后,采用线性加权和法将多目标优化问题转化为单目标优化问题。

2. 约束条件

电动汽车充电优化调度的约束条件主要满足用户使用方面和电网运行的要求。用户需求约束要求保证电动汽车在用户离开家的时间之前完成充电;电网运行约束要求保证小区在引入电动汽车充电负荷和光伏发电输出的情况下,电网节点的功率要维持在电网的合理安全范围之内。

五、粒子群算法求解

1. 粒子群算法原理

粒子群算法模拟鸟群的捕食行为,通过鸟群的集体协作达到群体最优值。算法通过更新粒子的位置和速度来搜索最优解。其中,惯性权重ω、加速度因子c1和c2、随机数r1和r2等参数对算法的性能有重要影响。

2. 改进的自适应变异粒子群算法

针对基本粒子群算法容易陷入局部最优的问题,采用改进的自适应变异粒子群算法进行求解。该算法对惯性权重ω和学习因子c1、c2进行改进,采用非线性反余弦加速策略,使算法在搜索初期更注重个体历史信息,后期更注重群体信息。同时,引入变异操作,增加算法的多样性,避免早熟收敛。

3. 算法求解过程

(1)初始化粒子群中粒子的位置与速度,并根据约束条件对粒子位置进行修正。
(2)计算粒子的适应度值(目标函数值)。
(3)将个体最优值设置为当前位置,群体最优值gbest设置为初始群体中最佳粒子的位置。
(4)根据更新公式更新粒子速度和相应位置。
(5)计算粒子群粒子的适应度,更新并记录粒子最优位置和群体最优位置。
(6)计算群体适应度方差σ²。
(7)计算变异概率pm。
(8)产生0~1的随机数,如果该数小于变异概率pm,则执行变异操作,并进行相应修正。
(9)判断是否达到结束条件,如果为真,则停止计算,并输出优化的解;如果为假,返回步骤(4)。

六、实验结果与分析

通过实际数据验证,基于改进的自适应变异粒子群算法的电动汽车充电动态优化策略能够显著降低电动汽车用户的充电电费,同时平抑小区配电网的负荷波动。与基本粒子群算法相比,改进后的算法在收敛速度和全局搜索能力方面均有显著提高。

七、结论与展望

本文提出了一种基于改进的自适应变异粒子群算法的电动汽车充电动态优化策略。该策略能够综合考虑用户需求、电网运行要求以及光伏发电输出等因素,实现电动汽车充电的优化调度。实验结果表明,该策略能够显著降低电动汽车用户的充电电费,同时平抑小区配电网的负荷波动。未来,将进一步研究多目标优化问题、考虑更多影响因素以及优化算法参数等方面的工作,以提高电动汽车充电优化的效果和实用性。

📚2 运行结果

部分代码:

function [GRIDdemand,totalPower,newTotalPower,statTotalPower] = smartCharging4(timeInterval,maxVehicle)

%% information specification
nOfIntervals = 12*60/timeInterval;
P = 6;

%% power demand information and EV information
% import the total power demand of UCLA in a day from 8 am to 8 pm per
% 15min
[GRIDdemand] = xlsread('total power demand UCLA',1,'C34:C82');

% generate the EV info at UCLA in a day from 8 am to 8 pm at 15min'
% interval
[vehicle_info,vehicle] = vehicle_info3(nOfIntervals,maxVehicle);

% calculate the EV charging demand
EVdemand = zeros(nOfIntervals+1,1);
for i = 0:nOfIntervals
%     nOfChargedEV = 0;
%     for j = 1:sum(vehicle)
%        if vehicle_info(j,1) <= i*timeInterval && (vehicle_info(j,1)+ vehicle_info(j,2)) > i*timeInterval
%            nOfChargedEV=nOfChargedEV + 1;
%        end
%     end
    nOfChargedEV = length(vehicle_info(find(vehicle_info(:,1) <= i*timeInterval & (vehicle_info(:,1)+ vehicle_info(:,2)) > i*timeInterval)));
    EVdemand(i+1) = nOfChargedEV*P;
end

% calculate the other loads
totalPower = GRIDdemand + EVdemand;


%% management process
% arrangement matrix
simulation = [linspace(1,sum(vehicle),sum(vehicle))',vehicle_info,12*60*ones(sum(vehicle),1)]; 
%[no,enteringTime,chargingTime,exitingTime,startTime]

% manage the real start charging time
for i = 1:nOfIntervals-6
    % accessible EV info
    knownEV_info = simulation(1:sum(vehicle(1:i)),:);
    
    [info,fv] = PSO2(40,1.49445,1.49445,1,400,knownEV_info,i,nOfIntervals+1,timeInterval,GRIDdemand);
    
    simulation(1:sum(vehicle(1:i)),:) = info;
end

newEVdemand = zeros(nOfIntervals+1,1);
for i = 0:nOfIntervals
    nOfChargedEV = length(simulation(find(simulation(:,5) <= i*timeInterval & (simulation(:,5)+ simulation(:,3)) > i*timeInterval)));
    newEVdemand(i+1) = nOfChargedEV*P;
end

newTotalPower = newEVdemand + GRIDdemand;

%% second management process
simulation2 = [linspace(1,sum(vehicle),sum(vehicle))',vehicle_info,12*60*ones(sum(vehicle),1)];
[info,fv] = PSO2(40,75,75,50,400,simulation2,1,nOfIntervals+1,timeInterval,GRIDdemand);
simulation2(1:sum(vehicle),:) = info;
newEVdemand2 = zeros(nOfIntervals+1,1);
for i = 0:nOfIntervals
    nOfChargedEV2 = length(simulation2(find(simulation2(:,5) <= i*timeInterval & (simulation2(:,5)+ simulation2(:,3)) > i*timeInterval)));
    newEVdemand2(i+1) = nOfChargedEV2*P;
end

statTotalPower = newEVdemand2 + GRIDdemand;


end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]邵炜晖许维胜徐志宇王宁农静.基于改进粒子群算法的电动汽车停车场V2G策略研究[J].计算机科学, 2018, 045(0z2):92-96,116.

[2]熊俊杰,刘韬,何昊,等.基于粒子群算法的电动汽车充电策略研究[J].江西电力, 2018(8):6.DOI:CNKI:SUN:JXDL.0.2018-08-005.

🌈4 Matlab代码、数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值