【故障诊断】【pytorch】基于EMD-CNN-Transformer的轴承故障诊断研究[西储大学数据](Python代码实现)

        💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景与意义

二、西储大学轴承数据集

三、研究方法

四、实验结果与分析

五、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Python代码、数据、文档说明书下载


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

一、研究背景与意义

滚动轴承是机械设备中不可或缺的部件,其运行状态直接关系到整个设备的性能和稳定性。然而,由于工作环境复杂、运行时间长等因素,滚动轴承容易发生故障,导致设备停机、生产中断甚至安全事故。因此,对滚动轴承进行故障诊断具有重要意义。经验模态分解(EMD)作为一种有效的信号处理技术,能够分解非线性和非平稳信号,提取出故障特征。卷积神经网络(CNN)在图像处理和特征提取方面表现优秀,而Transformer模型则因其强大的序列建模能力在自然语言处理等领域取得了显著成果。将EMD与CNN-Transformer模型相结合,可以实现对轴承故障的准确诊断,为机械设备的预防性维护和故障预测提供有力支持。

二、西储大学轴承数据集

西储大学轴承数据集是滚动轴承故障诊断领域常用的数据集之一,由美国凯斯西储大学提供。该数据集包含了多种故障类型(如内圈故障、外圈故障、滚动体故障等)和正常状态下的振动信号。这些信号是通过模拟实验记录的,具有广泛的工况覆盖和故障类型多样性,为研究者提供了丰富的数据资源和研究基础。

三、研究方法

  1. 数据预处理

    • 加载西储大学轴承数据集,并进行数据清洗和划分,得到训练集、验证集和测试集。
    • 对信号进行EMD分解,提取出IMF分量(本征模态函数),这些分量包含了信号的主要特征信息。
    • 对IMF分量进行可视化分析,以便更好地理解信号特性和故障特征。
  2. 模型构建

    • 构建EMD-CNN-Transformer模型。其中,CNN部分用于提取IMF分量的特征,Transformer部分用于捕捉时间序列中的依赖关系,并进行分类。
    • 定义模型的输入、输出和损失函数。输入为IMF分量,输出为故障类型,损失函数选择交叉熵损失函数。
    • 在模型构建过程中,可以利用PyTorch等深度学习框架进行模型搭建和训练。
  3. 模型训练与测试

    • 使用训练集对模型进行训练,通过反向传播算法优化模型参数。
    • 使用验证集对模型进行验证,调整模型参数以提高泛化能力。
    • 使用测试集对模型进行测试,评估模型的故障诊断性能,包括准确率、召回率等指标。

四、实验结果与分析

通过实验,可以得到以下结论:

  1. EMD-CNN-Transformer模型能够有效地提取轴承故障特征,并实现对故障类型的准确分类。
  2. 与传统的故障诊断方法相比,该模型具有更高的准确性和鲁棒性,能够适应不同工况和故障类型。
  3. Transformer模型在捕捉时间序列依赖关系方面表现出色,进一步提高了故障诊断的准确性。
  4. 通过可视化分析IMF分量,可以进一步理解故障产生的机理和特征,为故障预测和预防性维护提供支持。

五、结论与展望

本研究基于EMD-CNN-Transformer模型对西储大学轴承数据集进行了故障诊断研究,取得了良好的效果。未来,可以进一步探索以下方向:

  1. 优化模型结构,提高模型的计算效率和故障诊断性能。
  2. 将该方法应用于其他类型的机械设备故障诊断中,拓展其应用范围。
  3. 结合其他信号处理技术(如小波变换、短时傅里叶变换等),进一步提高故障诊断的准确性和可靠性。
  4. 探索深度学习模型的轻量化方法,以便在资源受限的嵌入式设备上部署故障诊断模型。

综上所述,基于EMD-CNN-Transformer的轴承故障诊断研究具有重要的理论意义和实际应用价值,为滚动轴承故障诊断提供了新的思路和方法。

📚2 运行结果

 

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

 [1]李酉戌.基于卷积神经网络的网络故障诊断模型[J].软件导刊, 2017, 16(12):4.

[2]谭博韬,黄民,刘跃,等.基于CNN-LSTM故障诊断的自动扶梯监测软件设计[J].电子测量技术, 2023, 46(12):1-7.

[3]吴聪,李梦男,李琨.基于数据划分和ODM-CNN的滚动轴承故障诊断[J].煤矿机械, 2023.

[4]杨慧,张瑞君,陈国良.基于ICNN-BiGRU的轴承故障诊断模型[J].Journal of Mechanical & Electrical Engineering, 2022, 39(11).

[5]霍志浩,尹安,陈洁灵,等.基于CNN-LSTM的轴系系统故障诊断系统设计与实现[C]//第32届中国过程控制会议(CPCC2021)论文集.2021.

🌈Python代码、数据、文档说明书下载

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值