【爆破载荷参数】基于 UFC 3-340-02 / TM 5-855-02 的爆炸压力效应研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

一、爆炸载荷参数

二、建筑物和结构物的响应

三、安全设计准则

四、防爆保护措施

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码及数据


💥1 概述

本文涵盖了以下内容:
- 爆炸载荷参数:包括爆炸药剂的特性、产生的爆炸压力、冲击波、破片及热辐射等信息。
- 建筑物和结构物的响应:介绍了建筑物和结构物受到爆炸作用时的响应及破坏机制,如振动、应力、位移等。
- 安全设计准则:提供了设计工程和基础设施时需要遵循的安全准则,以减轻爆炸压力效应对结构物、人员和设备的影响。
- 防爆保护措施:包括爆炸抗冲击设计、隔离区域规划、材料选用和防爆装置的使用等,以提高建筑物和设备的抗爆性能。

本文旨在深入探讨基于UFC 3-340-02 / TM 5-855-02标准的爆炸压力效应,以下是对文档内容的详细概述:

一、爆炸载荷参数

爆炸载荷参数是评估爆炸影响的基础,涵盖了多个关键方面:

  1. 爆炸药剂的特性:不同种类的炸药具有不同的爆炸能量和反应速度,这些特性直接影响爆炸产生的压力和冲击波强度。
  2. 爆炸压力:爆炸瞬间释放的能量转化为高压气浪,形成冲击波,对周围环境产生压力效应。
  3. 冲击波:冲击波是爆炸压力效应的主要表现形式,其传播速度、峰值压力和持续时间等参数是评估爆炸危害的重要指标。
  4. 破片:爆炸产生的破片对周围物体和人员构成直接威胁,其大小、形状和速度等特性决定了其破坏力。
  5. 热辐射:爆炸产生的热量以辐射形式向外传播,对周围环境和人员造成热伤害。

二、建筑物和结构物的响应

当爆炸发生时,建筑物和结构物会受到严重的冲击和破坏,其响应机制包括:

  1. 振动:爆炸冲击波引起的振动会对建筑物结构造成损伤,甚至导致倒塌。
  2. 应力:爆炸产生的压力波在建筑物结构中传播,形成应力集中区域,可能导致结构破坏。
  3. 位移:爆炸冲击波的作用会使建筑物产生整体或局部的位移,影响结构的稳定性和安全性。

三、安全设计准则

为了减轻爆炸压力效应对结构物、人员和设备的影响,需要遵循以下安全设计准则:

  1. 合理选址:避免将重要设施建在潜在爆炸危险区域附近。
  2. 结构加固:通过增加结构强度、提高材料韧性等措施,增强建筑物的抗爆性能。
  3. 防爆设施:设置防爆墙、防爆门等防爆设施,以阻挡或削弱爆炸冲击波的传播。
  4. 人员疏散:制定完善的人员疏散计划,确保在爆炸发生时能够迅速撤离危险区域。

四、防爆保护措施

除了遵循安全设计准则外,还可以采取以下防爆保护措施:

  1. 爆炸抗冲击设计:通过优化结构设计、选用抗爆材料等措施,提高建筑物的抗冲击能力。
  2. 隔离区域规划:在潜在爆炸危险区域周围设置隔离带,以减少爆炸冲击波对周围环境和人员的影响。
  3. 材料选用:选用具有良好抗爆性能的材料,如高强度钢材、防爆玻璃等。
  4. 防爆装置的使用:安装防爆装置,如防爆阀、泄爆口等,以释放爆炸产生的能量,减轻对建筑物的破坏。

综上所述,基于UFC 3-340-02 / TM 5-855-02的爆炸压力效应研究对于提高建筑物的抗爆性能、保障人员和设备的安全具有重要意义。未来,随着科技的不断进步和爆炸防护技术的不断发展,我们将能够更有效地应对爆炸威胁,保护人民生命财产安全。

📚2 运行结果

FAB = matfile('FreeAirBurstParametersPositivePhaseMetric.mat');
figure; hold on; box on; grid on;
title({'Positive phase shock wave parameters for a spherical';...
'TNT explosion in free air at sea level'})
xlabel('Scaled Distance Z = R/W^{1/3} [m/kg^{1/3}]')
axis([0.05 50 0.005 1e6])
plot(FAB.ScaledDistance1 ,FAB.ReflectedPressure)
plot(FAB.ScaledDistance2 ,FAB.PeakIncidentOverpressure)
plot(FAB.ScaledDistance3 ,FAB.ScaledReflectedImpuls)
plot(FAB.ScaledDistance4 ,FAB.ScaledIncidentImpuls)
plot(FAB.ScaledDistance5 ,FAB.ScaledArivalTime)
plot(FAB.ScaledDistance6 ,FAB.ScaledPositivePhaseDuration)
plot(FAB.ScaledDistance7 ,FAB.WaveFrontSpeed)
plot(FAB.ScaledDistance8 ,FAB.ScaledWaveLength)
set(gca,'yscale','log');
set(gca,'xscale','log');
legend('P_r, kPa','P_{so}, kPa','i_r/W^{1/3}, kPa-ms/kg^{1/3}','i_s/W^{1/3}, kPa-ms/kg^{1/3}',...
       't_a/W^{1/3}, ms/kg^{1/3}','t_0/W^{1/3}, ms/kg^{1/3}','U, m/ms','L_w/W^{1/3}, m/kg^{1/3}')

HSB = matfile('HemisphericalBurstParametersPositivePhaseMetric.mat');
figure; hold on; box on; grid on;
title({'Positive phase shock wave parameters for a hemispherical';...
'TNT surface explosion at sea level'})
xlabel('Scaled Distance Z = R/W^{1/3} [m/kg^{1/3}]')
axis([0.05 50 0.005 1e6])
plot(HSB.ScaledDistance1 ,HSB.ReflectedPressure)
plot(HSB.ScaledDistance2 ,HSB.PeakIncidentOverpressure)
plot(HSB.ScaledDistance3 ,HSB.ScaledReflectedImpuls)
plot(HSB.ScaledDistance4 ,HSB.ScaledIncidentImpuls)
plot(HSB.ScaledDistance5 ,HSB.ScaledArivalTime)
plot(HSB.ScaledDistance6 ,HSB.ScaledPositivePhaseDuration)
plot(HSB.ScaledDistance7 ,HSB.WaveFrontSpeed)
plot(HSB.ScaledDistance8 ,HSB.ScaledWaveLength)
set(gca,'yscale','log');
set(gca,'xscale','log');
legend('P_r, kPa','P_{so}, kPa','i_r/W^{1/3}, kPa-ms/kg^{1/3}','i_s/W^{1/3}, kPa-ms/kg^{1/3}',...
       't_a/W^{1/3}, ms/kg^{1/3}','t_0/W^{1/3}, ms/kg^{1/3}','U, m/ms','L_w/W^{1/3}, m/kg^{1/3}')

RPC = matfile('ReflectedPressureCoefficientVsAngleOfIncidenceMetric.mat');
figure; hold on; box on; grid on;
title('Reflected Pressure Coefficient')
view(3)
surf(RPC.AngleIncrements, RPC.PressureIncrements,RPC.AngleOfInclanationCoeficientMatrix)
xlabel('angle [deg]')
ylabel('Peak incident overpressure [kPa]')
zlabel('C_{r \alpha} = {P_r \alpha} / P_{SO}')
set(gca,'yscale','log');

% or as a line plot
figure; hold on; box on; grid on;
plot(RPC.AngleIncrements,RPC.AngleOfInclanationCoeficientMatrix)
title('Reflected Pressure Coefficient')
xlabel('angle [deg]')
ylabel('C_{r \alpha} = {P_r \alpha} / P_{SO}')

RSI = matfile('ReflectedScaledImpulseVsAngleOfIncidenceMetric.mat');
figure; hold on; box on; grid on;
title('Reflected Scaled Impulse')
view(3)
surf(RSI.AngleIncrements, RSI.PressureIncrements,RSI.ReflectedScaledImpulseMatrix)
xlabel('angle [deg]')
ylabel('Peak incident overpressure [kPa]')
zlabel('i_{r \alpha} / W^{1/3} [kPa-msec/kg^{1/3}]')
set(gca,'yscale','log');
set(gca,'zscale','log');

% or as a line plot
figure; hold on; box on; grid on;
plot(RSI.AngleIncrements, RSI.ReflectedScaledImpulseMatrix)
title('Reflected Scaled Impulse')
xlabel('angle [deg]')
ylabel('i_{r \alpha} / W^{1/3} [kPa-msec/kg^{1/3}]')
set(gca,'yscale','log');

MSH = matfile('MachStemHightMetric.mat'); 
figure; hold on; box on; grid on; grid minor
title('Scaled height of triple point')
xlabel('Scaled Horizontal Distance from Charge, m/kg^{1/3}')
ylabel('Scaled Height of Triple Point, H_{T}/W{^1/3} (m/kg^{1/3})')
axis([0 9 0 5])
plot(MSH.ScaledHorizontalDistanceMatrix', MSH.ScaledTriplePointHightMatrix','k')
text(MSH.ScaledHorizontalDistanceMatrix(:,end),MSH.ScaledTriplePointHightMatrix(:,end),...
     num2str(round(MSH.ScaledChargeHight',3)))
str1 = {'Number adjacent to curves','indicate scaled charge','height, H_c/W^{1/3}'};
text(8.8, 4.8, str1, 'HorizontalAlignment', 'right', 'VerticalAlignment', 'top',...
    'EdgeColor', 'k', 'Margin', 1.5, 'LineWidth', 1,'BackgroundColor','w')

figure; hold on; box on; grid on;
title('Angular reflected pressure')
xlabel('Horisonal distance form charge [m]')
ylabel('Pressure [kPa]')
plot(X,Pra_line)

 

figure; hold on; box on; axis equal;
colormap jet
ylabel(colorbar,'Pressure [kPa]')
xlabel('Distance from center [m]')
ylabel('Distance from center [m]')
title('Angular reflected pressure')
contourf(X,flipud(Y'),Pra_contour)

 

W = 0.9; % [kg] Charge
R = 2.5; % [m] Distance
Type = 'Surface'; % Detonation type
[Pr, Pso, ir, is, ta, to, U, Lw, Z] = BlastParameters(R, W, Type);
b = DecayCoefficient(Pso,is,to); % Decay coefficient for the Friedlander's equation
t = linspace(0,to,25); % [ms]
Ps = FriedlandersEquation(Pso, to, b, t);

figure; hold on; box on; grid on;
title('Incident overpressure history')
xlabel('Time, ta = 0, [ms]')
ylabel('Pressure [kPa]')
plot(t,Ps)

部分代码:

function Ps = FriedlandersEquationReal(Pso, ta, to, b, t)
%FriedlandersEquationReal Determines the pressure at time t following the
%Friedlander's equation for blast waveform.
%Ps = FriedlandersEquationReal(Pso, ta, to, b, t)
% INPUT
% Pso [kPa] Peak overpressure
% to  [ms]  Positive phase duration
% b   [-]   Decay coefficient for the waveform
% t   [ms]  Time 0 < t < ta+to (zero is time of detonation)

% OUTPUT
% Ps [kPa] Overpressure at time t

% The Friedlander's equation is given in the form of:
%           Ps(t) = Pso*(1-(t-ta)/to)*exp(-b*(t-ta)/to)

% The units are only recommendations and may be changed at own risk.
% The start time, ta, is NOT set to zero.

% Determine the pressure at time t
Ps = Pso*(1-(t-ta)./to).*exp(-b*(t-ta)./to);

% Correct time for special cases
Ps(t<ta) = 0;
Ps(t>(ta+to)) = 0;

end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1] Lawver D , Weeks J , Forman S ,et al.Cost Savings Using Stirrup Reinforcement Instead of Laced Wall Reinforcement Per UFC 3-340-02 (TM 5-1300) December, 2008[J].  2010.

[2] Jr W H Z , Acosta P F .SUMMARY OF THE NEW REINFORCED CONCRETE BLAST DESIGN PROVISIONS IN UFC 3-340-02, 'STRUCTURES TO RESIST THE EFFECTS OF ACCIDENTAL EXPLOSIONS'[C]//ACI Fall convention.DoD Explosives Safety Board in Alexandria, Virginia; US Army Engineering and Support Center, Huntsville, 2010.

[3]彭琦,吴昊,方秦,等.长持时平面爆炸波作用下RC梁动力响应研究[J].建筑结构学报, 2023, 44(3):15.

🌈4 Matlab代码及数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值