👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
全球能源枯竭和环境污染的日益加重,如何提高能源利用率和减少污染排放一直是关键问题,为解
决当前的微电网问题提供了新思路。微电网是一种新型的分布式能源组织结构,被视为整合可再生能 源的有效平台,使可再生能源系统接入配电网更加便捷,提高能源利用率,减少污染物排放,实现分布式 发电供负荷一体化运行。目前国内外学者对微电网进行了大量的研究,也取得了较大的突破。季颖等[3]提出采用一种深度学习的方法对微电网进行调度,建立以成本最小为目标函数,通过实例仿真验证所提方法的有效性。单新文等[4]采用改进粒子群算法对蓄电池的剩余电量进行优化求解,从而整体上提高能源的利用率。林永君等[5]提出一种含多微网的主配电网分布式双层优化调度方法,上层以网损最小为目标函数,下层以经济和环保为目标函数。陈汝科等[6]以经济成本最小为目标函数,建立数学模型,采用改进内部搜索算法求解。李海涛等[7]在考虑功率平衡和各微电源功率约束条件下,采用改进的粒子群对目标函数求解,最后通过实例验证改进粒子群算法的有效性。
差分进化算法( differential evolution algorithm,DE)1]是1997年由 Rainer Storn和 KennethPrice 提出的。该算法相对于遗传算法而言,参数少﹐计算相对简便﹐被广泛应用于电力优化调度问题,其主要过程包括初始化、变异、交叉、选择和终止5个步骤。
一、差分进化算法的基本原理与特点
差分进化算法(Differential Evolution, DE)是一种基于群体智能的全局优化算法,由Storn和Price于1995年提出,适用于连续参数优化问题。其核心机制通过模拟生物进化中的变异、交叉和选择操作实现高效搜索。
1. 算法流程
-
初始化:在解空间中随机生成初始种群,每个个体为实数向量,表示问题的候选解(如微电网中各发电单元出力)。
-
变异:通过差分向量生成新个体。典型策略为DE/rand/1:随机选取三个不同个体
其中FF为缩放因子,控制差分向量的影响。
-
交叉:将变异向量与目标向量按概率交叉,生成试验向量UiUi,增强种群多样性。
-
选择:比较试验向量与目标向量的适应度(如微电网运行成本),保留更优个体进入下一代。
2. 核心优势
- 全局搜索能力:通过多初始点并行搜索,避免陷入局部最优。
- 无需梯度信息:适用于非连续、不可导的复杂优化问题(如含可再生能源的微电网调度)。
- 参数少且易调优:仅需设置种群规模、缩放因子FF和交叉概率CRCR。
- 内在并行性:适合分布式计算,降低时间成本。
二、微电网调度的主要目标与约束
1. 优化目标
- 经济性:最小化运行成本,包括发电成本、购电成本、储能损耗等。
- 环保性:减少污染物排放(如CO₂)。
- 可靠性:平衡供需,降低弃风弃光率,提高可再生能源利用率。
- 多能源协调:电力、热力、燃气等多能流耦合优化。
2. 约束条件
- 功率平衡:发电、储能、负荷与电网交互的实时平衡。
- 设备运行限制:
- 分布式电源出力上下限及爬坡速率。
- 储能充放电功率及容量约束。
- 电网交互功率限制(如联络线容量)。
- 安全约束:电压、频率稳定性,网络安全。
- 用户需求:可调节负荷的用电偏好与满意度。
三、基于差分进化算法的微电网调度研究现状
1. 多目标优化
- 案例:文献[21]提出DE-PSO混合算法,结合粒子群的全局搜索与DE的局部优化,在微电网经济-环保双目标优化中,成本降低12%,碳排放减少18%。
- 方法:采用非支配排序(NSGA-II)或加权聚合处理多目标冲突。
2. 不确定性处理
- 场景分析:文献[28]利用情景分析法生成可再生能源出力与负荷的典型场景,结合DE优化动态调度方案,弃光率降低9%。
- 鲁棒优化:文献[24]针对CCHP型微电网的两阶段随机需求,改进DE算法实现鲁棒调度,资源利用率提高15%。
3. 动态调度
- 时间尺度:
- 日前调度:优化24小时出力计划,考虑电价峰谷。
- 日内滚动调度:15分钟级调整超级电容器与柴油机组出力,应对实时波动。
- 案例:含电动汽车的微电网中,DE优化V2B2模式,光伏自消纳率提升至82%,峰谷差缩小30%。
4. 改进策略
- 混合算法:DE与PSO、量子粒子群等结合,提升收敛速度与精度。
- 参数自适应:动态调整FF和CRCR,避免早熟收敛。
- 扰动策略:引入混沌初始化或移民操作,维持种群多样性。
四、优势与局限性
1. 优势
- 全局搜索能力:在复杂非凸问题中优于传统梯度方法。
- 灵活性:可处理离散与连续变量混合问题(如储能充放电状态)。
- 并行性:适合大规模微电网集群优化。
2. 局限性
- 参数敏感性:FF和CRCR设置不当易导致收敛停滞。
- 局部最优风险:高维问题中可能陷入次优解,需结合扰动策略。
- 计算效率:大规模问题迭代次数多,需借助分布式计算加速。
五、典型实验数据与效果
研究案例 | 优化目标 | 改进方法 | 效果(对比基准) | 引用 |
---|---|---|---|---|
DE-PSO混合算法 | 经济性、环保性 | 多重变异策略 | 成本降12%,碳排放降18% | |
V2B2模式调度 | 用电成本、光伏自消纳率 | 多目标DE | 自消纳率82%,峰谷差缩30% | |
CCHP两阶段调度 | 资源利用率、稳定性 | 改进DE+场景缩减 | 资源利用率提高15% | |
含碳交易的连续时间调度 | 经济性、碳排放 | 复合电价模型+改进DE | 算法收敛速度提升25% |
六、未来研究方向
- 智能参数调整:结合强化学习动态优化DE参数。
- 多时间尺度耦合:日前-日内-实时调度的协同优化。
- 异构能源整合:电-热-氢多能流耦合的DE模型。
- 边缘计算应用:DE算法在分布式边缘节点的部署优化。
📚2 运行结果
部分代码:
%% 费用计算
% 计算燃料电池、微型燃气轮机、小型内燃机燃料成本
F_FuelCost= sum(x(1:24))*data.parameter(3,4)*data.c+sum(x(25:48))*data.parameter(4,4)*data.c+sum(x(49:72))*data.parameter(5,4)*data.c;
% 计算设备运行成本
F_YunweiCost=data.parameter(1,3)*sum(data.PV)+data.parameter(2,3)*sum(data.WT)+data.parameter(3,3)*sum(x(1:24))+data.parameter(4,3)*sum(abs(x(25:48)))+data.parameter(5,3)*sum(x(49:72))+data.parameter(6,3)*sum(abs(x_BT));
% 计算污染物成本
F_PollutionCost=sum(data.pollution(:,1).*data.pollution(:,2).*sum(x(1:24)))+sum(data.pollution(:,1).*data.pollution(:,4).*sum(x(25:48)))+sum(data.pollution(:,1).*data.pollution(:,3).*sum(x(49:72)))+sum(data.pollution(:,1).*data.pollution(:,5).*sum(x(73:96)));
% 大电网交互成本
Grid=x(73:end);
tempa=find(Grid>0);
tempb=find(Grid<0);
F_GridChange= sum(Grid(tempa).*data.Price(tempa))+sum(Grid(tempb).*data.Price(tempb));
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]陈丹凤,赵才,张志飞,周燕.基于改进差分进化算法的微电网调度研究[J].广西大学学报(自然科学版),2022,47(04):1018-1029.DOI:10.13624/j.cnki.issn.1001-7445.2022.1018.
[2]黄淑媛,肖健梅.基于差分进化算法的微电网多目标优化调度[J].船电技术,2018,38(07):57-61.DOI:10.13632/j.meee.2018.07.014.