💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
文献来源:
基于纳什博弈和ADMM的多微网主体能源共享研究
摘要:为了促进微电网之间的能源互助,扩大能源交互类型,提高可再生能源利用率,本文提出了一种基于纳什博弈的面向多微电网(MMGs)的双层共享策略。首先,对微电网模型进行低碳转型,将源侧转化为综合灵活的碳捕获热电厂运行模式。然后,构建基于纳什博弈的多微电网主体电热双层共享模型,将其分解为收益最大化子问题和收益再分配子问题。在收益最大化子问题中,以碳配额的最低运营成本和分阶段碳交易为目标,采用交替方向乘子法进行分布式解决。在收益再分配子问题中,通过构建不同时期和能源类型的非对称能源映射贡献函数,实现合理的收益再分配。最后,仿真结果验证了所提出方法的有效性。结果表明,本文的策略可以实现多微电网(MMG)联盟的经济目标优化,并具有合理的收益再分配、促进风能和太阳能消费、减少碳排放的优势。
关键词:纳什博弈;多微电网;电热双层共享;气电厂低碳转型;交替方向乘子法;CHP
《中国至2060年碳中和研究报告》指出:“低碳零碳技术是实现碳中和目标的关键,特别是在这些方面,如捕集、利用和储存(CCUS),负排放和碳汇”。促进可再生能源的有效利实现电力系统的低碳、清洁能源供应,这些将是一举两得今后的重点研究方向。微电网是整合生产者和销售者的重要途径。在内部,包含各种分布式电源和多种类型的负载,可以促进能源的自我生产和自我消耗。同时,对外也可以与电网互动,实现供销一体化。点对点(P2P)微电网间的能源交易可以有效降低微电网的用电成本;提高新能源利用率,减少碳排放。
详细文章讲解见第4部分。
一、研究背景与核心问题
随着分布式能源与微电网技术的普及,多微网间的能源共享成为提升能源效率、降低碳排放的关键手段。然而,多主体间的利益冲突、隐私保护需求及复杂优化问题,使得传统的集中式调度方法难以适用。纳什博弈理论(Nash Bargaining)与交替方向乘子法(ADMM)的结合,为解决这一难题提供了新思路:前者通过合作博弈实现公平收益分配,后者通过分布式优化降低计算复杂度并保护隐私。
二、纳什博弈在能源共享中的应用
1. 核心模型与目标
纳什博弈理论通过最大化参与者效用乘积(即纳什乘积),实现合作收益的帕累托最优分配。其标准模型为:
其中,Un为参与者n的效用,Un0为不合作时的基准效用(分歧点)。
2. 多微网场景下的改进
- 非对称纳什谈判:考虑不同微网对联盟的贡献差异(如储能容量、新能源出力),通过权重调整收益分配。例如,文献利用自然对数函数量化贡献度,作为议价因子。
- 动态分歧点设计:将微网独立运行成本作为谈判破裂点,激励其参与合作。
- 多能源耦合:在电-热-气综合能源系统中,纳什博弈模型需同时优化多能流交易与碳排放约束。
3. 优势与挑战
- 优势:确保公平性、激励长期合作、兼容多目标优化。
- 挑战:贡献度量化方法需精确(如储能充放电效率对贡献的影响),且需处理非线性目标函数的求解复杂度。
三、ADMM算法在分布式优化中的作用
1. 算法原理
ADMM通过分解原问题为多个子问题,交替更新局部变量与全局对偶变量,实现分布式求解。其核心步骤为:
- 局部优化:各微网独立求解自身能源调度问题。
- 全局协调:通过拉格朗日乘子更新,协调耦合约束(如能量平衡)。
- 迭代收敛:直至满足残差条件(如功率偏差阈值)。
2. 多微网场景下的适配性
- 隐私保护:微网无需共享内部发电成本、负荷需求等敏感数据,仅交换边界功率信息。
- 计算效率:并行求解降低维数灾难,适用于大规模微网联盟。
- 鲁棒性:引入自适应步长机制(如根据残差动态调整步长)或鲁棒优化(处理新能源出力不确定性),提升收敛速度与稳定性。
3. 典型应用场景
- 电能交易协调:分解P2P交易模型,通过ADMM迭代确定各微网购/售电计划。
- 储能共享调度:将储能充放电计划与微网需求解耦,分别优化后协调。
- 多能流协同:在电-热综合系统中,独立优化电、热子网络,再通过ADMM耦合。
四、纳什博弈与ADMM的结合框架
1. 联合优化流程
- 问题分解:将多微网能源共享问题拆分为两个子问题:
- 子问题1(成本最小化) :联盟整体调度优化,目标为最小化总运行成本。
- 子问题2(收益分配) :基于纳什乘积最大化,分配合作剩余。
- 交替求解:
- 使用ADMM迭代求解子问题1,获得最优功率调度策略。
- 将子问题1结果输入子问题2,通过非对称纳什谈判确定支付价格与收益分配。
- 收敛条件:功率偏差与收益分配偏差均小于设定阈值。
2. 关键技术细节
- 变量耦合处理:引入辅助变量(如虚拟功率注入节点)或对偶变量,将全局约束转化为局部约束。
- 贡献度量化:定义非线性映射函数(如基于储能荷电状态或新能源出力波动性),动态调整议价权重。
- 算法加速:采用自适应惩罚因子(调整拉格朗日乘子更新步长)或预条件共轭梯度法,减少迭代次数。
3. 仿真验证结果
- 收敛性能:ADMM通常在50-100次迭代内收敛,计算时间控制在5分钟内。
- 经济性提升:合作运行可降低总成本10%-25%,新能源消纳率提升至接近100%。
- 公平性:非对称纳什分配使贡献度高的微网获得更高收益(如储能提供者收益增加15%)。
五、典型案例分析
案例1:非对称纳什谈判与ADMM结合的电能交易
- 场景:3个含风光储的微网通过P2P交易共享电能。
- 方法:
- 子问题1:ADMM优化各微网购/售电计划,目标为最小化购电成本与弃风弃光惩罚。
- 子问题2:基于贡献度(新能源出力与储能调节量)分配交易收益。
- 结果:
- 总运行成本降低18.7%,碳排放减少10.47%。
- ADMM在62次迭代后收敛,计算时间231秒。
案例2:多微网-共享储能的鲁棒优化
- 场景:风光出力不确定下的多微网共享储能调度。
- 方法:
- 子问题1:两阶段分布鲁棒优化,考虑最恶劣情景下的储能充放电策略。
- 子问题2:基于储能荷电状态变化量的收益分配。
- 结果:
- 在最恶劣风光出力下,总成本仍降低12.3%。
- ADMM收敛迭代次数为89次,优于集中式求解的计算效率。
六、挑战与未来方向
-
模型局限性:
- 现有贡献度量化方法未考虑用户侧小容量储能的影响。
- 纳什博弈假设参与者完全理性,实际中可能存在策略性谎报。
-
算法改进:
- 结合随机ADMM与深度学习,提升不确定场景下的求解速度。
- 探索纳什博弈与主从博弈的混合框架,兼容竞争与合作场景。
-
扩展应用:
- 集成碳交易机制,实现低碳约束下的多目标优化。
- 在电力元宇宙平台中模拟多微网动态博弈,增强决策实时性。
七、结论
纳什博弈与ADMM的结合为多微网能源共享提供了兼顾公平性、效率与隐私的解决方案。通过分解-协调框架,既能实现全局成本最优,又能按贡献公平分配收益。未来需进一步解决复杂场景下的模型适应性,并探索与新兴技术(如区块链、数字孪生)的融合,推动能源共享向更高智能层级发展。
📚2 运行结果
部分代码:
%微网2(MG2)的分布式优化迭代模型
%调节Soc_C就可以实现,加不加CO2溶液存储器
function [ P_e_21 , Obj_MG_21 ] = Copy_of_Fun_MG_21( P_e_12 ,P_e_23 ,P_e_32 ,lambda_e_12,lambda_e_23 )
%% 决策变量初始化
L_e=sdpvar(1,24); %微网经过需求响应后实际的电负荷
L_h=sdpvar(1,24); %微网经过需求响应后实际的热负荷
P_e_cut=sdpvar(1,24); %微网的可削减电负荷
P_e_tran=sdpvar(1,24); %微网的可转移电负荷
P_h_DR=sdpvar(1,24); %微网的可削减热负荷
E_bat=sdpvar(1,24); %微网中的储电设备的储电余量
P_batc=sdpvar(1,24); %储电设备的充电功率
P_batd=sdpvar(1,24); %储电设备的放电功率
U_abs=binvar(1,24); %储电设备的放电状态位,取1时为放电,0为未放电
U_relea=binvar(1,24); %储电设备的充电状态位,取1时为充电,0为未充电
P_e_wd=sdpvar(1,24); %风力的实际出力值
P_e_GT=sdpvar(1,24); %燃气轮机的发电功率
P_h_GT=sdpvar(1,24); %燃气轮机的产热功率
P_h_GB=sdpvar(1,24); %余热锅炉的产热功率
P_buy=sdpvar(1,24); %微网向外电网的购买的电功率
P_sell=sdpvar(1,24); %微网向外电网的售出的电功率
Gas_GT=sdpvar(1,24); %GT的耗气量
Gas_GB=sdpvar(1,24); %GB的耗气量
Gas=sdpvar(1,24); %系统的总耗气量
%P2G+CCS
P_e1=sdpvar(1,24); %CHP的供电功率
P_e3=sdpvar(1,24); %CHP的供给P2G的功率
P_e2=sdpvar(1,24); %CHP的供给CCS的功率
P_h=sdpvar(1,24); %CHP的输出热功率
P_gs=sdpvar(1,24); %P2G的产气功率
C_ccs=sdpvar(1,24); %CCS的碳捕集二氧化碳量
C_p2g=sdpvar(1,24); %P2G所用的二氧化碳量
Soc_C = sdpvar(1,24); %CCS的碳捕集量/P2G所用的二氧化碳量
P_e_21 = sdpvar(1,24); %微网2给微网1的电量
%% 导入电/热负荷和电网购电电价
Predict_wd = [3716,3646,3617,3469,3401,3373,3168,2865,2712,2528,2572,2645,2681,2588,2594,2701,2638,2593,2674,2745,2851,2949,3529,3704 ];
L_e0 = [7764,6828,6116,6290,6377,6224,6420,7655,8761,11253,12184,13009,13809,13940,14005,13763,13671,14117,13216,11604,11197,9682,8960,8496] ;
L_h0 = [7783,7740,7842,7449,7772,7876,7639,7567,7246,7071,6940,6691,6486,6516,6486,6558,6556,6761,6763,6921,7109,7348,7755,7842]*0.4 ;
Predict_wd = floor(Predict_wd );
pri_e=[0.40*ones(1,7),0.75*ones(1,4),1.20*ones(1,3),0.75*ones(1,4),1.20*ones(1,4),0.40*ones(1,2)];
grid_sw= 0.2*ones(1,24);
%% 约束条件
C=[];
%微网的电/热负荷需求响应部分
for t=1:24
C=[C,
L_e(t)==L_e0(t)-P_e_cut(t)-P_e_tran(t), %微网的电负荷功率平衡约束
L_h(t)==L_h0(t)-P_h_DR(t), %微网的热负荷功率平衡约束
0 <=P_e_cut(t)<= 0.05*L_e0(t), %微网的可削减电功率上下限约束
-0.1*L_e0(t)<=P_e_tran(t) <= 0.1*L_e0(t), %微网的可转移电功率上下限约束
-0.1*L_h0(t)<=P_h_DR(t)<=0.1*L_h0(t), %微网的可削减热功率上下限约束
];
end
C=[C,sum(P_e_tran)==0,]; %转移的电负荷总量为0约束
C=[C,sum(P_h_DR )==0,]; %转移的热负荷总量为0约束
%微网的储电设备约束部分
%储能电站荷电状态连续性约束
C=[C,E_bat(1)== 1000+0.95*P_batc(1)-P_batd(1)/0.96,]; %1时段约束
for t=2:24
C=[C,E_bat(t)==E_bat(t-1)+0.95*P_batc(t)-P_batd(t)/0.96,]; %储电设备容量变化约束
end
%储能容量大小约束
for t=1:24
C=[C,500<=E_bat(t)<=2500,]; %储电量上下限约束
end
%始末状态守恒
C=[C,E_bat(24)==1000,];
%储能电站的充放电功率约束,Big-M法进行线性化处理
M=1000; %这里的M是个很大的数
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。