柔性电力系统中油浸式变压器的最佳老化极限研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

1. 柔性电力系统的核心特点及其对变压器的影响

2. 油浸式变压器老化机理与关键影响因素

3. 老化关键参数与寿命的定量关系

4. 柔性系统中最佳老化极限的评估方法

5. 优化运维策略与延寿措施

6. 标准与规范适应性分析

结论

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据、文章


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

柔性电力系统中油浸式变压器最佳老化极限研究

摘要:
本文研究了柔性电力系统中变压器的最佳老化极限的选择。与类似研究不同,本文考虑了变压器的剩余日历寿命。此外,结果表明,对于相同的绝缘老化,可以通过变压器传输不同数量的能量。因此,本文将最大能量传输作为定义变压器(包括现有和新的变压器)最佳老化极限的标准。结果显示,变压器的最佳老化极限应该等于剩余绝缘寿命与剩余日历寿命之间的比率。此外,本文以新变压器的能量传输作为函数,考虑了各种老化极限和不同日历寿命持续时间。因此,如果系统操作员考虑变压器剩余绝缘寿命与剩余日历寿命之间的比率,老化极限的选择可能会不同于传统使用的(正常)老化极限。

如今,能源行业正面临向脱碳电力系统过渡的能源转型。许多国家正在扩大可再生能源规模,以减少温室气体排放,但它们的电力网络面临着由拥挤、电压不稳定和谐波等因素引起的高压力。此外,供热和交通部门的持续电气化将进一步增加电力负荷,因此对电网基础设施造成压力。虽然分布式能源资源的份额持续快速增长,但电力网络无法以类似的速度加强。然而,随着电力系统变得前所未有地灵活,系统运营商迎来了新的机遇。例如,可控分布式发电、储能、需求侧管理和动态热负荷评估等技术可以减轻电力网络的压力。因此,在灵活电力系统中,系统运营商的挑战在于最大化电网基础设施的利用率。运营规划中考虑电网基础设施的利用率可以通过老化限制来实现。老化限制是一个综合约束条件,确保电力设备在可变温度下运行,其累积效应不超过规范损失寿命(LoL)。例如,在可变温度下运行的变压器的日常损失寿命不得超过如果同一变压器在恒定设计温度下运行时的损失寿命(通常为98ႏ RU)。系统运营商/研究人员的这种假设确保变压器可以按制造商预先定义的设计寿命全面运行。最近的研究证实,考虑到其剩余绝缘寿命,现有变压器的老化限制实际上可以提高到高于正常限制。事实上,由于长时间以来操作在正常老化限制以下,变压器仍具有显著的剩余寿命。图中展示了当变压器已经运行其设计寿命日历,但变压器仍保留一些绝缘资源以继续其运行的情况。

1. 柔性电力系统的核心特点及其对变压器的影响
  • 定义与特征
    柔性电力系统通过电力电子技术(如FACTS、柔性直流输电)实现电压、电流、功率的实时精确控制,具备响应快(毫秒级)、适应性强、智能化程度高等特点。其核心目标是提升新能源消纳能力(如风光发电)和电网稳定性,但同时也导致系统波动性增强(如频繁的负荷变化、潮流调节)。
  • 对变压器的特殊要求
    • 动态载荷能力:需适应短期过载和周期性负荷波动,如夏季负载率可达1.41倍额定容量。
    • 快速响应需求:频繁调压操作(如通过有载调压分接开关)加剧机械磨损和热应力。
    • 环境适应性:需在湿度≤95%、温度-25℃~40℃的宽范围内稳定运行。

2. 油浸式变压器老化机理与关键影响因素
  • 热老化(主导因素)
    • 6℃法则:绕组热点温度每升高6℃,固体绝缘(油浸纸)老化速率加倍。98℃时老化率为基准值,140℃运行1小时等效于98℃运行128小时。
    • 柔性系统加剧热老化的原因:新能源并网引起的负荷波动导致温度频繁变化,加速绝缘材料热降解。
  • 电老化
    局部放电是主要诱因,电场不均匀性在柔性系统中更显著(如电力电子器件引入谐波),导致绝缘材料分子结构破坏。
  • 化学老化
    • 水分:湿度2%时绝缘纸老化速度是干燥状态的11倍,柔性系统频繁启停易吸入潮气。
    • 酸值与氧化:变压器油老化产生酸性物质,降低绝缘强度并形成恶性循环(粘度增加→散热恶化→温度升高)。
  • 机械老化
    频繁调压操作导致有载分接开关机械磨损,密封失效引发渗漏油和水分侵入。
3. 老化关键参数与寿命的定量关系
参数寿命关联性阈值标准
热点温度>140℃时油纸绝缘析出气泡,绝缘强度骤降;98℃为基准老化率(非热改性纸)极限值:140℃(IEC/GB标准)
糠醛含量与绝缘纸聚合度(DP)呈负相关:DP<450(寿命中期),DP<250(危险级)>0.5mg/L:寿命中期;>4mg/L:严重老化(DL/T596标准)
油中水分水分含量↑1% → 击穿电压↓50%;湿度2%时老化速率达干燥状态11倍运行油水分限值:≤35ppm(GB/T7595)
酸值>0.1mg KOH/g时加速油质劣化,形成油泥堵塞散热通道更换阈值:0.3mg KOH/g
局部放电量放电量↑→ 绝缘材料电蚀损↑,最终导致击穿220kV变压器限值:≤500pC(DL/T417)

4. 柔性系统中最佳老化极限的评估方法
  • 动态载荷下的寿命损失补偿模型
    短期过载(如1.41倍额定负载)可通过后续低负荷期补偿寿命损失,需满足:
  • 多参数融合评估技术
    • 间接法:监测油中糠醛、CO/CO₂气体(需排除换油干扰)。
    • 直接法:聚合度(DP)测试(最可靠但需停电)。
    • 智能诊断:基于DGA(溶解气体分析)、温度、负荷数据的AI预测模型(如PSO-ELM算法)。
  • 柔性系统专属修正因子
    • 负荷波动系数:根据风光出力曲线调整热点温度限值。
    • 谐波影响因子:高频谐波加速局部放电,需额外降低20%电老化阈值。
5. 优化运维策略与延寿措施
  • 主动防控技术
    • 散热增强:强迫风冷系统应对短期过载;智能散热器根据温度自动启停。
    • 密封改进:氟橡胶密封件抵御湿度变化;GPS远程监测油枕油位。
  • 油质管理
    • 在线净油系统:实时过滤水分、酸值及颗粒物(颗粒度≤5μm/100mL)。
    • 抗氧化添加剂:延缓油氧化速率30%以上。
  • 寿命动态评估
    建立聚合度-糠醛-温度的映射关系,实现剩余寿命预测:
6. 标准与规范适应性分析
  • 现行标准局限
    GB/T1094.7-2008未考虑柔性系统的动态负荷特性,140℃热点阈值在频繁波动下风险过高。
  • 修订建议
    • 引入 "等效老化时间" 概念,允许短期超温但需补偿寿命损失。
    • 糠醛检测周期从6年缩短至2年(柔性系统)。

结论

柔性电力系统中油浸式变压器的最佳老化极限需兼顾动态载荷特性多因素耦合老化机制

  1. 热老化极限:短期热点温度≤140℃,但需满足日累积寿命损失≤24小时;
  2. 化学老化极限:糠醛≤4mg/L、酸值≤0.1mg KOH/g、水分≤15ppm(严苛环境);
  3. 运维核心:通过智能评估模型(如DGA+AI)实现寿命损失实时补偿,结合强化密封和在线净油提升适应性。

📚2 运行结果

 部分代码:

%% This script allows drawing the figure 6
% Use Section 1 to estimate the energy transfer as a function
% of ageing limit. (data generation)

% Otherwise, you can dircetly launch section 2 to construct the figure "ageing 
% limit vs Energy transfer" from precalculated data.('ONAN_interm_results.mat')

% Section 3 draws the figure: Energy transfer as a function of time

% Section 4 prepares the data for Figure 8 
%% Section 1: Generation of data
% Initial data 
TIM=linspace(1,1440,1440)'; % time in minutes for 1 day
Temperature=-50:1:50;       % Full range of ambient temperatures
Ageing_limit=0.1:0.1:12.7;  % Range of Ageing_limits 
AMB=linspace(20,20,24)';    % Fixed ambient temperature, hour time step

% Finding the energy transfer for each ageing limit
for i=1:length(Ageing_limit) % for ageing limit
    
    % Solve the optimization problem for 1  day
    [Energy_limit,HST_limit,AEQ_limit,TOT_limit,Energy]=optimal_energy_limitFig6(AMB,Ageing_limit(i));
    
    % Save energy transfer. So far, units are  pu*1min but later we will
    % normalize them
    Energy_result(i)=Energy;
    
    % Energy limit (loading profile of transformer in pu)
    PUL_result(1:1440,i)=Energy_limit;
    
    % Loss of Life results
    LoL_result(i)=AEQ_limit;
    
    % caclulate the ageing acceleration factor (DL)
    for m=1:length(HST_limit)
        DL(m,:) = (2^((HST_limit(m)-98)/6));
    end
    
    % Calculate value of cummulated ageing at each moment
    Current_ageing=0;
    for j=1:length(DL)
        Current_ageing(j)=Current_ageing(end)+DL(j);
    end
    
    %Save the result of cummulated ageing for given ageing limit (i)
    Current_ageing_result(1:1440,i)=Current_ageing;
    i % show the iteration
end
%% Section 2: Construct the figure ageing limit vs Energy transfer 
clear;clc;close all
% Load the results from previous section
load('ONAN_interm_results.mat')


% Choose the calendar life left (see cases in Table 1 of the paper)
studied_case=1; % 1,2 or 3

if studied_case==1
    % I case
    calendar_time_left=50;   % 50%
    insulation_time_left=70; % 70%
    
elseif studied_case==2
    % II case
    calendar_time_left=50;   % 50%
    insulation_time_left=50; % 70%
    
elseif studied_case==3
    % III case
    calendar_time_left=50;   % 50%
    insulation_time_left=30; % 70%
else
    error('Check the value of studied_case. It shoul be 1,2 or 3')
end

% Find the ratio (optimal ageing limit)
ratio=insulation_time_left/calendar_time_left;

% Find the calendar life in minutes of days
calendar_time_left_min=calendar_time_left*1440/100;

% Find the index which shows how fast insulation life left will be consumed at
% given ageing limit
for i=1:length(Ageing_limit)
    index(i)=(insulation_time_left*1440/100)/Ageing_limit(i);
end

% Round the index to get an integer (approximation!)
index=round(index);

% Find time for which insulation resource can be used. 
time_percent=(index./1440); % in pu
% Note that we calculate it relatively to 1 day 1440. Units are pu!

% Find how much energy is transfered for each ageing limit
for i=1:length(Ageing_limit)
    if index(i)>calendar_time_left_min
        ind=calendar_time_left_min;
    else
        ind=index(i);
    end
    Energy_day(i)=ind/calendar_time_left_min*sum(PUL_result(:,i));
end

% Energy_day=Energy_result;

% Normalize the energy transfer relatively to ageing limit =1 pu
Energy_day_percent=Energy_day/Energy_day(10)*100;

plot(Ageing_limit,Energy_day_percent)
ylabel('Energy, % of Energy at Ageing limit=1')
xlabel('Ageing limit(AAF), pu')

% time_percent=index/1440*100;
%% Section 3:Energy transfer as a function of time (additonal figure)
% Assumption: we assume that for each day the loading profile (and thus energy
% transfer) are the same. Thus, we can estimate how much energy can be
% transfered during the entire life if we multiply the energy trasnfer for
% 1 day on possible operation at given ageing limit (in per units!)
Energy_all_life=time_percent.*Energy_day;

% Normalize the energy transfer for each ageing limit (relatively to ageing
% limit = 1pu)
Energy_all_life=Energy_all_life./Energy_all_life(10)*100;

% Convert time_percent from pu into percent
time_percent=time_percent*100;

% Set the intitial position 
start=[0 0];

figure % create the figure
hold on 
 

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

🌈4 Matlab代码、数据、文章

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值