柔性电力系统中油浸式变压器的最佳老化极限的MATLAB代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

柔性电力系统(Flexible AC Transmission Systems, FACTS)的广泛应用显著提升了电力系统的运行效率和可靠性,然而,其对电力设备,特别是油浸式变压器,提出了更高的要求。传统电力系统下的变压器老化极限评估标准已不再完全适用,因此,确定柔性电力系统中油浸式变压器的最佳老化极限,成为保障系统安全稳定运行的关键问题。本文将深入探讨该问题,从老化机理、影响因素以及评估方法等方面进行论述。

一、 油浸式变压器老化机理及影响因素

油浸式变压器的老化是一个复杂的多因素作用过程,主要包括绝缘油的老化和绝缘纸的老化。绝缘油的老化主要表现为氧化、水解和热分解,导致油的介质强度下降、酸值增加、挥发性组分增多,最终影响变压器的绝缘性能。绝缘纸的老化则主要为热老化和氧化老化,导致纤维强度下降、机械强度降低,以及介质损耗增加,同样影响变压器的绝缘性能。

在柔性电力系统中,由于FACTS器件的快速开关操作和频繁的电力潮流变化,变压器承受着更高的运行应力,这直接加剧了其老化进程。具体的影响因素包括:

  1. 过载运行: FACTS的应用可能会导致变压器长期处于过载状态,从而加速绝缘老化。过载运行会提高变压器绕组和铁芯的温度,加速绝缘油和绝缘纸的热老化过程。

  2. 谐波过电压: FACTS器件的开关操作会产生大量的谐波电流,从而导致变压器内部产生谐波过电压。谐波过电压会加剧绝缘老化,特别是对绝缘纸的冲击作用尤为显著。

  3. 快速电压变化: FACTS器件的快速调节作用会引起变压器电压频繁波动,这会加速绝缘老化。反复的电压变化会产生机械应力,加剧绝缘材料的劣化。

  4. 电力系统暂态过程: 电力系统故障或突发事件会导致变压器承受更大的暂态电流和电压冲击,这些冲击会加剧绝缘老化,甚至导致绝缘击穿。

二、 最佳老化极限的评估方法

确定油浸式变压器的最佳老化极限并非易事,需要综合考虑多种因素,并采用多种评估方法。目前常用的方法包括:

  1. 基于状态的评估方法: 该方法通过对变压器运行状态的实时监测,例如油中溶解气体分析(Dissolved Gas Analysis, DGA)、介质损耗因子(Dielectric Dissipation Factor, DDF)、油的酸值等,来判断变压器的老化程度。该方法能够较为精确地反映变压器的健康状况,但需要建立精确的故障诊断模型,并且需要对数据进行复杂的分析。

  2. 基于寿命模型的评估方法: 该方法基于变压器老化机理,建立数学模型来预测变压器的剩余寿命。该方法能够提前预测变压器的老化趋势,但模型的准确性依赖于对老化机理的深入理解和对参数的准确估计。常用模型包括Arrhenius模型和Weibull模型等。

  3. 基于人工智能的评估方法: 随着人工智能技术的快速发展,基于机器学习和深度学习的变压器状态评估方法得到了广泛关注。该方法能够处理大量的监测数据,并学习复杂的非线性关系,从而提高评估的精度和效率。然而,该方法的可靠性依赖于数据的质量和模型的训练效果。

  4. 综合评估方法: 考虑到单一评估方法的局限性,实际应用中通常采用多种方法相结合的综合评估方法。通过对多种评估结果进行分析和综合判断,可以更准确地确定变压器的最佳老化极限。

三、 柔性电力系统中油浸式变压器最佳老化极限的确定

在柔性电力系统中,由于运行条件更加复杂,需要结合FACTS器件的运行特性,对上述评估方法进行改进和优化。例如,需要考虑谐波影响,对DGA分析方法进行改进;需要考虑快速电压变化的影响,对寿命模型进行修正;需要考虑FACTS器件的控制策略,对人工智能模型进行训练。

最终确定最佳老化极限需要综合考虑以下因素:

  1. 变压器的运行条件: 包括负荷水平、电压等级、环境温度等。

  2. 变压器的设计参数: 包括绝缘材料、冷却方式等。

  3. FACTS器件的运行特性: 包括开关频率、控制策略等。

  4. 电力系统的可靠性要求: 需要根据电力系统的可靠性要求,确定变压器可以承受的风险等级。

四、 结论

确定柔性电力系统中油浸式变压器的最佳老化极限是一个复杂且重要的课题。需要深入研究变压器老化机理,改进和优化现有评估方法,并结合实际运行情况,建立一套完善的评估体系。只有这样,才能确保变压器的安全可靠运行,保障柔性电力系统的稳定性和高效性。 未来的研究方向应集中在开发更精确的老化模型、更有效的监测技术以及更智能的评估算法上,以进一步提高变压器老化极限评估的精度和可靠性。 同时,加强对变压器运行状态的实时监测,及时发现潜在风险,采取相应的预防措施,也是保障变压器安全可靠运行的关键。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

🌿 往期回顾可以关注主页,点击搜索

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值