使用seq2seq模型架构实现英译法任务
前言
学习目标:
- 更深一步了解seq2seq模型架构和翻译数据集.
- 掌握使用基于GRU的seq2seq模型架构实现翻译的过程.
- 掌握Attention机制在解码器端的实现过程.
seq2seq模型架构:
seq2seq模型架构分析:
从图中可知, seq2seq模型架构, 包括两部分分别是encoder(编码器)和decoder(解码器), 编码器和解码器的内部实现都使用了GRU模型, 这里它要完成的是一个中文到英文的翻译: 欢迎 来 北京 --> welcome to BeiJing. 编码器首先处理中文输入"欢迎 来 北京", 通过GRU模型获得每个时间步的输出张量,最后将它们拼接成一个中间语义张量c, 接着解码器将使用这个中间语义张量c以及每一个时间步的隐层张量, 逐个生成对应的翻译语言.
翻译数据集:
下载地址