【RNN经典案例】使用seq2seq模型架构实现英译法任务

该博客详细介绍了如何利用GRU和Attention机制构建seq2seq模型,实现英文到法文的翻译任务。包括数据预处理、编码器与解码器的构建、模型训练及Attention效果分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

学习目标:

  • 更深一步了解seq2seq模型架构和翻译数据集.
  • 掌握使用基于GRU的seq2seq模型架构实现翻译的过程.
  • 掌握Attention机制在解码器端的实现过程.

seq2seq模型架构:

在这里插入图片描述
seq2seq模型架构分析:

从图中可知, seq2seq模型架构, 包括两部分分别是encoder(编码器)和decoder(解码器), 编码器和解码器的内部实现都使用了GRU模型, 这里它要完成的是一个中文到英文的翻译: 欢迎 来 北京 --> welcome to BeiJing. 编码器首先处理中文输入"欢迎 来 北京", 通过GRU模型获得每个时间步的输出张量,最后将它们拼接成一个中间语义张量c, 接着解码器将使用这个中间语义张量c以及每一个时间步的隐层张量, 逐个生成对应的翻译语言.

翻译数据集:

下载地址

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

chaser&upper

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值