基于LSTM时间序列分析预测拉尼娜年天气
- 天气预测
-
- Import all necessary libraries
-
- Replace all column names by overwritting on it
- Set Index as Year
- Do transpose to know, how many years are present
- Generate the date_range series
- Convert the dataframe into matrix
- Let's convert the matrix size of 68 x 12 into column vector
- Convert the data_np into dataframe
- Now Let's plot how our data looks like
- Here we are splitting the data into train and test set
- As we know we use LSTM model to our data then we follow Imporvements over RNN principle
天气预测
- 通过考量拉尼娜年来预测天气情况。
- 该项目帮助我们了解了如何根据时间顺序概念进行更新来预测处理数据。
- 根据我在做这个项目时的经验,我尝试了不同数量的时代,尝试了不同的技术来提高 LSTM 模型的准确性。
Import all necessary libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import keras as