AI时代必懂的5大核心概念:从AIGC到AGI,一文讲透AI(人工智能)未来

第一概念:AI(人工智能)的基石——什么是人工智能?

1、 AI的定义及核心逻辑

人工智能(AI)不是科幻电影里的机器人,而是“用数据训练出的超级模仿者”, 它的核心靠“三驾马车”:

数据:AI的“学习素材”,AI的学习就是去找规律,只有数据越多,找到规律的可能性就越高,就越准确。

算法:AI的“大脑”,决定如何理解以及处理数据,就像我们每个人的大脑,理解不一样,处理事件的结果以及效率也就不一样。所以不同平台的AI产品,相当于拥有不同的“大脑”,最终导致算法、结果也不一样

算力:AI的“体力”——芯片,所有数据的理解以及处理(算法)都是计算,只有算力越高,计算的速度就会越快,使用AI时得到的反馈才会越快。

关系图如下:

2、 AI的分类:
按功能分类
  • 弱AI(专用型):像偏科学霸,AlphaGo下棋无敌但不会生成文章和图片。

  • 强AI(通用型):目前还未实现的“全能天才”,能像人类一样跨领域学习。

按能力分类
  • 感知智能:能够识别和理解图像、声音和语言等信息的AI。

  • 认知智能:具备理解、推理和决策能力的AI,如自然语言处理(NLP)和专家系统。

  • 创造力智能:能够创造新内容的AI,涉及音乐、艺术和写作等领域。

目前市面上的AI产品都包括以上三种智能,只是每个AI产品的侧重点不一样,例如当下大火的DeepSeek-R1,它的推理能力目前最强。

当然,还有一些其它分类,比如:按“学习能力分类按行业领域分类”等,这里就不一一赘述。

第二概念:AIGC——内容生产的革命者

1、定义及核心逻辑

AIGC(AI-Generated Content,人工智能生成内容)是当前AI领域最热门的方向之一,它指利用人工智能技术自动生成文本、图像、音频、视频等内容,他的本质是让AI模仿人类创作。比如你写作文、画画、编曲的过程,AI通过“看”海量数据(文章、图片、音乐)总结规律,自己学会生成类似的内容

2、 AIGC核心技术:

  • GAN(生成对抗网络):原理基于对抗训练,由两个主要组件构成:生成器(Generator)和判别器(Discriminator)‌。生成器的任务是接收随机噪声作为输入,通过深度神经网络的变换生成逼真的数据样本,目标是生成尽可能真实的数据以欺骗判别器;而判别器的任务是区分输入的数据是真实数据还是由生成器生成的假数据,目标是尽可能准确地区分真实数据和生成数据。相当于两个艺术家相互博弈,一个负责尽可能的生成逼真的作品,一个尽可能的找出作品的破绽,在双方博弈的过程中就会生成以假乱真的作品。

  • Transformer架构:是一种基于自注意力机制的深度学习模型,其核心点在于注意力机制。相当于我们在聊天时会关注人家说的关键字以及主题,不会导致聊天过程中严重跑题,这样AI生成的文章或者对话内容才是我们所需要的,而不是天马行空,一锅乱炖。

  • Diffusion Models(扩散模型):一种基于概率论的生成模型,其灵感来源于物理学中的扩散过程。‌扩散模型的核心思想是通过模拟数据的逐步噪声化(前向扩散过程)和逆向去噪声化(逆向生成过程)来生成高质量的数据样本。比如:询问AI生成新图片的流程是AI先生成一张模糊的图片,然后再逐步恢复到清晰的图片,像剥洋葱一样,从噪点中逐步生成高清图像。(图片生成模型Stable Diffusion就是利用该技术构建)

通过以上3种技术的结合,AIGC拥有了无比强大的优势:1分钟生成100张海报初稿、一段文字直接生成图像……

3、 AIGC工作流程(以生成图片为例)

目标:我需要生成一只赛博朋克风格的戴着墨镜的老虎,老虎正在吃鸡腿。

输入指令:你告诉AI“一只戴墨镜的大老虎正在吃鸡腿,赛博朋克风格”。

文字编码:AI把这句话拆解成关键词(大老虎、墨镜、赛博朋克、鸡腿)。

扩散生成:从噪点图开始,一步步调整,让画面逐渐符合你的描述。

输出结果:生成一张从没存在过的图片,但看起来合理。

(此图为AI自主生成)

4、应用场景

自媒体博主:一键生成爆款小红书文案、一键制作短视频。

广告公司:用Midjourney生成50版logo方案,人类只需精选+微调。

网文写手:用NovelAI自动续写套路剧情,自己专注设计核心人设。

程序员:根据提示自动补全代码、根据需求自动编写代码。

第三概念:AGI——人工智能的终极形态

1、定义及核心逻辑

AGI(Artificial General Intelligence,人工通用智能)**是人工智能领域的一个重要概念,指具备与人类相当(或超越人类)的广泛认知能力的人工智能系统。**与目前主流的狭义人工智能(Narrow AI)(如语音助手、图像识别、围棋程序AlphaGo等)不同,AGI的目标是让机器能像人类一样灵活学习、推理、适应新环境,并解决多种类型的任务,而不仅限于单一领域。

2、 核心逻辑

  • 底层能力:构建“世界模型”

让AI像婴儿一样,通过观察、互动、试错,自发总结世界的运行规律(比如下雪温度会下降、火会烫伤)。

  • 核心机制:元学习(学习如何学习)

先掌握“学习方法论”,再根据方法论快速适应新任务。例如:学会“如何观察环境→分析因果关系→制定策略→验证结果”这一流程后,无论是学做饭、写代码还是谈判,都能复用同一套思维框架。

  • 通用性本质:跨领域抽象与迁移

从具体经验中提取抽象原则(如“工具的本质是延伸能力”),遇到新问题时,将原则跨领域组合(比如用“杠杆原理”同时解决撬石头、设计机械臂、投资杠杆等问题),好比人类学会用菜刀切菜,则就可以将该经验应用到刀砍树上面。

  • 自主目标系统:动态生成意图

自我设定目标:基于对世界的理解,主动产生需求(如“探索未知领域”、“优化生存效率”),就好比你徒手去搬砖,发觉搬砖手疼,你就会想着去做一双手套,这就是自我设定目标。

  • 自主探索:处理“未知的未知”

遇到未知情况,AGI能够自主探索解决方案。比如现在需要用苹果砸玻璃,但是苹果太软砸不烂,AI见过用石头砸碎玻璃,所以它想到先把苹果冻住,再去砸玻璃,这就是AI自主探索解决方案的过程。

总结起来,核心逻辑就是把AGI当做一颗智能种子,只要给它提供合适的“土壤”和“水分”,他就能自己生根发芽,自主进化。

3、 应用场景

真正的理想中的AGI并未完全落地,现在落地的都是狭义增强型AGI,主要集中在垂直领域任务优化,更多的还是人机协作,增强效率,比如:

电商领域:智能商品数据分析、直播数字人

金融科技:智能风控、智能投顾、智能研报

教育行业:口语陪练、作业批改

游戏行业、工业领域也有非常多的落地,这里就不一一列举了,随着未来技术的发展,相信真正的AGI应用落地也指日可待。

第四、第五概念:RAG(检索增强生成)与AI Agent(AI智能体)——技术落地的“双引擎”

前面二、三部分提到了AIGC,AGI,这些都是AI领域的两个概念,往往真实的业务场景还需要借助更多的技术去落地实施,RAG和AI Agent就是目前AI应用落地实施过程中用的最多的2种技术,下面将会分别对这2种技术进行介绍。

1、RAG:给AI装上“实时搜索引擎

RAG翻译过来叫检索增强生成,顾名思义,就是每次在生产内容时“我”先去查找一下相关知识,结合这些查找到的知识进行内容的生成,这样给出的答案会合理更具可解释性。

  • 为什么需要这种技术?

一方面是现在市面上大家用到的大模型绝大多数都是通用大模型,训练用的数据也是有时效性,比如我用2025/2/16号之前的数据进行训练,那么这个大模型就只能知道2025/2/16之前的知识,后面的知识它是没有的,那么你问他之后的问题,它就没法回答你,或者是编造个回答,另一方面,很多企业在做内容生成或者是问答式应用时需要结合企业内部的知识去做,单纯的大模型也不可能包含企业内部的知识,所以需要借助其他技术去让大模型能够获得你的知识。

  • RAG解决方案:

案例:Deepseek-R1联网联网可准确回答“ 今天上海天气如何?”

2、AI Agent(AI智能体):你的24小时数字员工

AI Agent 是一种超越简单文本生成的人工智能系统。它使用大型语言模型(LLM)作为其核心计算引擎,使其能够进行对话、执行任务、推理并展现一定程度的自主性。简而言之,AI Agent是一个具有复杂推理能力、记忆和执行任务手段的系统。

  • 主要组成部分:

  • 规划(Planning)

子目标拆解:AI Agent将大任务拆分为更小的可管理的子目标,使得可以有效处理复杂任务。就像把"做满汉全席"拆成买菜→洗菜→炒菜→摆盘等步骤。

反思与完善:AI Agent对历史动作可以自我批评和自我反思,从错误中学习并在后续步骤里完善,从而改善最终结果的质量做完事会自我检讨。比如写代码报错后,能像学霸改错题本一样优化下次方案。

  • 记忆(Memory)

短期记忆:AI Agent能够记住对话上下文,像聊天时记得你刚说过的喜好,下一句就能推荐符合你口味的餐厅。

长期记忆:为AI Agent提供保留和召回长期信息的能力,通常利用外部向量存储和检索实现。类似你的私人秘书,把重要信息存进数据库,需要时秒速调取(比如记住你每年都要给妈妈过生日)。

  • 工具使用(Tool use)

当AI Agent不具备某些功能时会主动使用工具来处理问题:查天气就调用气象API、算数学题直接启动计算器、查公司财报就连接数据库。

  • 行动(Action)

面对不同的任务,智能体系统有一个完整的行动策略集,在决策时可以选择需要执行的行动。例如:需要创作时启动"写作模式",遇到数学题切到"计算模式",处理文件自动调用代码解释器,根据目标不同自动选择执行策略。

  • 核心能力

自主规划:将“策划生日派对”要求,拆解为:订餐厅、买蛋糕、通知好友、路程规划等任务。

自动执行:调用地图API查路线、登录电商平台,比价下单。

案例:AutoGPT可自动上网查找资料,并自动完成资料的处理,整合,最终生成一份完整的行业调研报告。

结语

本篇文章主要简单介绍了AI、AIGC、AGI、RAG、AI Agent的基本概念及部分原理,主要目的也是希望能够对想了解AI知识的朋友起一个科普的作用。其中涉及到RAG及AI Agent的原理相对比较复杂,后续会专门开篇幅来进行撰写,希望大家喜欢。

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值