10分钟看明白爆火的本地知识库! 掌握本地知识库基本概念与RAG的完整架构

“我们要做知识库,但是看了一圈技术方案都差不多,到底该选哪个?”

“产品说要用向量数据库,运维说要用图数据库,架构师又提出要用RAG,这些到底是什么关系?”

相信朋友都遇到过类似的困惑。AI大模型的普及,企业建设知识库的需求也与日俱增,但面对市面上林林总总的技术方案,却常常无所适从。

本文将用最通俗的语言,帮你理清知识库建设的核心概念,让你在10分钟内建立起完整的技术认知,轻松应对知识库选型难题。

一、为什么知识库这么难选?

近期和很多读者朋友交流,发现他们在规划知识库建设时普遍存在三个困惑:

第一个困惑是概念混淆。 向量数据库、图数据库、知识图谱,这些看起来都能存储企业知识,到底有什么区别?RAG又是什么,和这些存储方案是什么关系?

第二个困惑是技术选型。 不同的方案各有优势,该如何根据企业实际需求做出选择?是不是非要用最新最热的技术?

第三个困惑是落地路径。 选定技术后如何规划实施步骤?需要准备哪些资源?会遇到哪些坑?

要解答这些困惑,我们得先理清楚几个核心概念。

二、知识库的"三驾马车"

如果你在管理一个大型图书馆,面临三个基本问题:

1、 如何存放这些书籍和资料

2、 如何帮助读者快速找到需要的内容

3、 如何展示不同书籍之间的关联关系

知识库建设其实也面临类似的问题,对应着三个核心技术组件:

本地知识库:企业的"中央档案馆"

这是最基础的一层,就像图书馆的书库,负责存储企业的各类文档资料。可以是简单的文件系统,也可以是结构化的数据库。它解决的是"往哪里存"的问题。

向量数据库:智能的"检索引擎"

传统的关键词搜索就像按书名找书,经常会漏掉很多相关内容。向量数据库则是一种更智能的检索方式:它能将文本转换为数学向量,通过计算相似度来找到语义相关的内容。这就好比有一位深谙各类书籍内容的图书管理员,不管你用什么方式描述,都能帮你找到相关的资料。

知识图谱:智能的"知识导航"

如果说向量数据库解决了"找到相关资料"的问题,知识图谱则帮助我们理解资料之间的关联。它就像一张知识地图,清晰地展示了不同知识点之间的联系。比如查询一个产品问题时,相关的技术文档、使用案例、常见问题等信息都能一目了然。

三、RAG:"三驾马车"的总工程师

说到这里,你可能会问:这三种技术看起来都很好,是不是都得用上?实际上,这正是RAG(检索增强生成)技术的核心思路:它扮演着总工程师的角色,协调三个组件默契配合。

就像图书馆需要书库(本地知识库)、检索系统(向量数据库)和分类导航(知识图谱)协同工作才能为读者提供最好的服务,RAG技术正是将这三者有机整合,让AI系统能够更智能地利用个人或者企业知识。

四、什么是RAG(检索增强生成)

传统的大语言模型存在一些明显的不足:

  • 知识更新不及时:大模型的知识截止于其训练数据的时间点,无法获取训练后出现的新知识。

  • 幻觉问题:模型可能会生成看似合理但实际错误的内容,经常“一本正经地胡说八道”。

  • 知识覆盖不足:对于某些垂直领域的专业知识,模型可能没有充分的训练数据,因而无法准确回答。

为了解决上述问题,RAG(Retrieval-Augmented Generation,检索增强生成)技术应运而生。其核心思想是:在生成回复前,先从外部资料库中检索相关信息,结合检索结果生成更准确的回答。这就像给大模型配备了一个即时查阅的“百科全书”,使其回答更加准确、及时。

Baidu AI Studio - 一站式AI开发实训平台

RAG的本质是高效的检索与生成相结合。它并不依赖于某一种特定的技术或工具,而是一个方法论。无论你选择使用传统的数据库、向量数据库,还是知识图谱,只要能够实现高效的检索,辅助大模型进行生成,就实现了RAG的目标。

五、RAG的工作流程

RAG的工作流程一般分为以下三步:

步骤一:创建资料库

  • 收集相关的文本、图像、音频等资料,将其进行预处理和组织。

  • 使用嵌入技术(Embedding)将这些资料转换为向量表示,方便后续的相似度计算。

  • 将向量化的资料存储在一个高效的数据库中,通常是向量数据库。

步骤二:检索相关资料

  • 当用户提出问题时,先对问题进行向量化处理。

  • 在向量数据库中检索与问题向量最相似的资料,即找到与问题最相关的内容。

步骤三:生成回答

  • 将检索到的相关资料与用户的问题一起输入大模型。

  • 大模型根据输入的信息,生成一个更准确、具体的回答。

六、本地知识库、向量数据库、知识图谱的概念

在理解了RAG的基本流程后,让我们来看一下本地知识库、向量数据库和知识图谱分别是什么,以及它们与RAG的关系。

1、 本地知识库

本地知识库是组织内部的资料集合,包括文档、报告、规章制度、技术档案等。其目的是将组织内的知识系统化、结构化,方便员工查阅和利用。

本地知识库的组织形式多种多样,可以是简单的文件夹结构、数据库,或者更加复杂的知识图谱等。

2、 向量数据库

向量数据库是一种专门存储高维向量数据的数据库,支持高效的向量相似度检索。随着深度学习和嵌入技术的发展,大量的数据(如文本、图像)可以被表示为向量形式,向量数据库因此成为存储和检索这些数据的理想选择。

向量数据库

  • 存储向量数据:将嵌入后的数据存储起来。

  • 快速检索相似向量:基于向量的相似度(如余弦相似度、欧氏距离)来检索最相关的数据。

3、 知识图谱

知识图谱是对现实世界实体及其关系的图形化表示。它以节点和边的形式,直观地展示了不同实体之间的关联。例如,在一个知识图谱中,“苹果”这个节点可以与“水果”、“公司”等节点相连,表示不同的含义和关系。

mark

  • 结构化知识:将非结构化的数据转化为结构化的形式,便于理解和利用。

  • 关系挖掘:通过图谱,可以发现数据之间潜在的关联。

七、 RAG与本地知识库、向量数据库、知识图谱的关系

理解了上述概念后,我们来探讨它们之间的递进关系和相互作用。

1、本地知识库是RAG的基础

在RAG的流程中,第一步就是创建一个资料库,这实际上就是建立一个本地知识库。这是RAG运作的基础,因为没有资料库,就无从检索相关信息。

2、 向量数据库存储知识库的向量化表示

为了使检索更加高效,RAG会将本地知识库中的资料进行向量化处理,即将文本等数据转换为向量表示。这些向量数据需要被存储起来,以便进行相似度检索。这里,向量数据库就起到了关键作用。

  • 向量化处理:使用嵌入模型(如BERT、Word2Vec)将文本转换为向量。

  • 存储和检索:向量数据库能够高效地存储大量向量,并支持快速的相似度查询。

向量化通俗来说,就是把各种各样的资料(比如文字、图片、音频等)用一串数字来表示。就好比你要描述一个人的面孔,如果只说“脸长圆圆的、眼睛不大不小”会很模糊;但如果能用具体的测量数据(如脸长多少厘米、双眼间距多少厘米等)来记录,那就更精确了。向量化就是把原本模糊、抽象的特征,用定量的方式变成可以在计算机中处理的数字形式。

这样做的好处是,计算机在比较这串数字时,可以很快算出它们相似或不同的程度;就像我们能通过身高、年龄、兴趣爱好等数字指标,快速判断几个人的相似度。当文字、图片等被表征成向量后,就可以更方便地进行检索、分类或推荐,使得人工智能可以在海量信息中“抓”到最有用的部分。

3、 知识图谱提升知识库的组织和检索

在一些复杂应用中,仅仅依靠向量相似度可能不足以满足需求。知识图谱可以进一步优化知识库的组织方式,提供更深层次的关系检索。

  • 结构化组织:知识图谱将知识库中的数据以节点和边的形式组织起来,清晰地展示实体之间的关系。

  • 关系检索:除了相似度检索外,还可以根据实体间的关系进行查询。

4、 RAG与三者的综合应用

(1)检索阶段的协同

  • 向量检索:利用向量数据库,根据语义相似度快速检索相关资料。

  • 关系检索:利用知识图谱,按照实体关系找到相关信息。

(2)生成阶段的增强

  • 将检索到的资料(文本片段、关系信息)与用户的问题一起输入到大模型中。

  • 大模型结合这些信息,生成更加准确、详尽的回答。

八、案例

让我用一个具体的智能客服案例来展示RAG技术是如何在实践中发挥作用的。

某手机品牌智能客服系统的实践案例

以一个常见的用户问题为例:“Face ID解锁失败怎么办?” 让我们看看系统是如何处理这个问题的。

构建本地知识库阶段

客服团队首先需要建立一个全面的知识资料库。他们收集了品牌官方的故障排查手册、历史上成功解决的案例记录、用户反馈的常见问题、以及最新的系统更新说明文档等资料。这些资料经过整理和标准化,形成了基础知识库。

比如对于"在强光环境下Face ID可能无法正常工作"这样的信息,团队会将其整理成结构化的文本格式,便于后续处理。

向量化与存储阶段

系统会将整理好的文档转换成向量形式。例如,一段描述"Face ID失败的常见原因包括摄像头被遮挡、光线过强、距离过近"的文本,会被转换成一个512维的数字向量。这些向量被存储在专业的向量数据库中,比如Milvus或Faiss。通过计算向量之间的距离,系统可以快速找到语义相近的内容。

知识图谱构建阶段

系统会从文本中提取关键实体和它们之间的关系。比如"Face ID"、“原深感摄像头"这样的实体,以及"原深感摄像头是Face ID的组成部分”、"光线过强会导致解锁失败"这样的关系。这些信息构成了一个立体的知识网络。

实际工作流程

当用户提出问题时,系统的处理流程非常精密:

问题理解环节中,系统会将用户的问题转换为向量表示,这样就可以与知识库中的内容进行匹配。

在检索环节,系统会同时启动向量检索和关系检索。向量检索找到语义最相近的故障解决文档,而知识图谱则帮助系统理解Face ID、失败原因和解决方案之间的逻辑关系。

信息整合环节中,系统会综合多个来源的信息:官方的故障排查流程、类似案例的解决方案、Face ID的工作原理说明,以及最新系统更新的相关内容。

在生成回答环节,系统会将这些信息整合成一个连贯的解决方案。回答中会包含最新系统更新的影响、清晰的排查步骤、可能的原因分析,以及备选的解决方案。

完善的知识库建设、精准的信息检索,以及智能的答案生成。这三个环节的紧密配合,让整个系统能够像经验丰富的客服专员一样,提供专业、准确的服务。

总结

  • 本地知识库是基础:它是RAG检索的源头,是存放资料的地方。

  • 向量数据库提高检索效率:通过向量化,向量数据库能够高效地存储和检索语义相关的信息。

  • 知识图谱深化数据关系:它提供了数据间的结构化关系,弥补了向量检索的不足,进一步提升了检索的准确性和深度。

RAG整合三者:RAG通过整合本地知识库、向量数据库和知识图谱,实现了对大模型的能力增强,使其能够生成更准确、及时的回答。

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值