【大模型面试必看】字节 豆包大模型 面经分享

今天带来的是字节 豆包大模型 一面-三面 内容分享

一面

  1. 自我介绍与项目/论文: 介绍个人情况、实习经历和论文研究。

  2. 模型架构与改进:

  • 简历上写实习微调过Qwen2,详细说说Qwen2 模型结构详解,对比 Qwen1 的改进点(需结合实际微调经验)。
  • 探讨 Decoder-only 成为大模型主流架构的原因,及其相较于 Encoder-Decoder 架构的优势。
  1. 技术细节:
  • RoPE(旋转位置编码)原理、常见位置编码方法对比(绝对、外推等)、RoPE 的优点及如何进一步外推。
  1. 训练流程与算法:
  • 解释为何在 SFT(监督微调)之后还需要RLHF(基于人类反馈的强化学习)。
  • PPO 和 DPO 的主要思想对比,PPO 针对 RLHF 的改进点,以及了解 DeepSeek 或 GRPO 等其他 RL 算法。
  1. 编程能力: LeetCode 23 - 合并 K 个升序链表。

二面

  1. 自我介绍与项目深挖: 自我介绍,并选择一个做得好的项目或论文进行详细阐述(研究动机、实现细节、与先前方案对比)。

  2. 模型推理优化:

  • 讲解 KV Cache 的工作原理。
  • 讲解 GQA(Grouped-Query Attention)的思想。
  • 讲解 FlashAttention 的思想和做法。
  1. 模型训练优化:
  • 讲解模型训练的并行优化方法(如 DeepSpeed 中的数据并行、流水线并行、张量并行/序列并行等)。
  1. 开放性问题: 探讨如何提升大模型的对话能力,提出可以改进的点。

  2. 编程能力: 现场手写 GQA 的代码片段。

三面

  1. 自我介绍与知识探测: 自我介绍、项目/论文陈述,面试官会穿插考察 LLM 基础知识(如 Qwen 结构、微调数据匹配)。

  2. 模型挑战与前沿:

  • 大模型的灾难性遗忘问题及其解决方案。
  • 讲解 RAG(检索增强生成)的基本方法。
  • 讲解 GraphRAG 的做法。
  1. 场景应用设计:
  • 针对特定领域(如医疗、法律)知识和规则,设计一个智能助手,重点是如何搭建 RAG 链路。
  1. 开放性问题: 是否使用过豆包 App,对其有何看法,觉得存在哪些问题。

  2. 编程能力: LeetCode 416 - 分割等和子集。

总结

  • 一面侧重于 LLM 基础知识、核心架构理解、主流训练方法(SFT/RLHF)和关键技术细节(如位置编码、PPO/DPO)。
  • 二面深入到底层优化技术,包括推理优化(KV Cache, GQA, FlashAttention)和训练优化(分布式策略),并考察了对模型能力提升的思考。
  • 三面则关注 LLM 面临的挑战(灾难性遗忘)、前沿技术(RAG/GraphRAG)、结合实际场景的设计能力以及对产品的反馈。

每轮面试都包含算法编程题,且问题难度和深度逐步递增,不仅要求扎实的理论基础,也看重实践经验、优化能力和对前沿技术的追踪。总体来说面试还是有一定难度的,需要好好准备。

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值