数学建模(NO.16 时间序列回归)

一.应用

  1. 时间序列也称动态序列,是指将某种现象的指标数值按照时间顺序排列而成的数值序列。
  2. 时间序列分析大致可分成三大部分,分别是描述过去、分析规律和预测未来,
  3. 时间序列分析中常用的三种模型:季节分解、指数平滑方法和ARIMA模型

二.时间序列数据

时间序列数据:对同一对象在不同时间连续观察所取得的数据。
例如:
(1)从出生到现在,你的体重的数据(每年生日称一次)。
(2)中国历年来GDP的数据。
(3)在某地方每隔一小时测得的温度数据。

三.时间序列的基本概念

时间序列也称动态序列,是指将某种现象的指标数值按照时间顺序排列而成的数值序列。
时间序列由两个组成要素构成:

  1. 第一个要素是时间要素;年、季度、月、周、日、小时、分钟、秒
  2. 第二个要素是数值要素。

时间序列根据时间和数值性质的不同,可以分为时期时间序列时点时间序列

  1. 时期序列中,数值要素反映现象在一定时期内发展的结果;
  2. 时点序列中,数值要素反映现象在一定时点上的瞬间水平。

例如:
(1)从出生到现在,你的体重的数据(每年生日称一次)。 (2)中国历年来GDP的数据。
(3)在某地方每隔一小时测得的温度数据。
(1)和(3)是时点时间序列;(2)是时期时间序列
时期序列可加,时点序列不可加

四.时间序列分解

因为时间序列是某个指标数值长期变化的数值表现,所以时间序列数值变化背后必然蕴含着数值变换的规律性,这些规律性就是时间序列分析的切入点。
一般情况下,时间序列的数值变化规律有以下四种:
在这里插入图片描述
一个时间序列往往是以上四类变化形式的叠加。

  • 长期趋势:T:,受到长期趋势影响因素的影响,表现出持续上升或持续下降的趋势
    例如,随着国家经济的发展,人均收入将逐渐提升;随着医学水平的提高,新生儿死亡率在不断下降。

  • 季节趋势:S:由于季节的转变使得指标数值发生周期性变动。这里的季节是广义的,一般以月、季、周为时间单位,不能以年作单位。
    如雪糕和棉衣的销量都会随着季节气温的变化而周期变化;每年的长假(五一、十一、春节)都会引起出行人数的大量增加。

  • 循环变动:C:循环变动通常以若干年为周期,在曲线图上表现为波浪式的周期变动。这种周期变动的特征表现为增加和减少交替出现,但是并不具严格规则的周期性连续变动。
    最典型的周期案例就是市场经济的商业周期和的整个国家的经济周期。

  • 不规则变动:I:由某些随机因素导致的数值变化,这些因素的作用是不可预知和没有规律性的,可以视为由于众多偶然因素对时间序列造成的影响(在回归中又被称为扰动项

四种变动与指标数值最终变动的关系可能是叠加关系,也可能是乘积关系。

五.叠加模型和乘积模型

(1)如果四种变动之间是相互独立的关系,那么叠加模型可以表示为:
Y = T + S + C + I Y=T+S+C+I Y=T+S+C+I
(2)如果四种变动之间存在相互影响关系,那么应该使用乘积模型:
Y = T ∗ S ∗ C ∗ I Y=T*S*C*I Y=TSCI
在这里插入图片描述

(1)数据具有年内的周期性时才能使用时间序列分解,例如
数据是月份数据(周期为12)、季度数据(周期为4) ,如果是年份
数据则不行。
(2)在具体的时间序列图上,如果随着时间的推移,序列的
季节波动变得越来越大,则反映各种变动之间的关系发生变化,
建议使用乘积模型;反之,如果时间序列图的波动保持恒定,
则可以直接使用叠加模型;当然,如果不存在季节波动,则两
种分解均可以。

六 步骤

1.Spss处理时间序列中的缺失值

  1. 缺失值发生在时间序列的开头或者尾部,可采用直接删除的方法;
  2. 缺失值发生在序列的中间位置,则不能删除(删除后原有的时间序列会错位), 可采用替换缺失值的方法。
    在这里插入图片描述
    替换缺失值的五种方法
    在这里插入图片描述

2.Spss软件定义时间变量

在这里插入图片描述
在这里插入图片描述

3.时间序列图(时序图)

在这里插入图片描述

在这里插入图片描述
销量有向上的趋势,且第二季度的销量明显高于
其他季度,因此数据表现出很强的季节性。随着
时间变化,销量数据的季节波动变化不大,因此
可使用加法分解模型。

4.季节性分解

在这里插入图片描述在这里插入图片描述
结果解读
在这里插入图片描述

5.画出分解后的时序图

在这里插入图片描述

七.时间序列分析总结

在这里插入图片描述

八.建立时间序列分析模型

1.总介绍

在这里插入图片描述

2.Simple模型

在这里插入图片描述
在这里插入图片描述

关于平滑系数𝛼的选取原则: 1、如果时间序列具有不规则的起伏变化,但长期趋势接近一个稳定常数,α值一 般较小(取0.05‐0.02之间)
2、如果时间序列具有迅速明显的变化倾向,则α应该取较大值(取0.3‐0.5)
3、如果时间序列变化缓慢,亦应选较小的值(一般在0.1‐0.4之间)
实际上,Spss的专家建模如果选择了Simple模型用来估计,那么软件会帮我们自动 选取一个适合的平滑系数使得预测误差最小。

3.线性趋势模型(linear trend)

在这里插入图片描述
能够预测包含趋势的数据,
该方法包含一个预测方程和两个平滑方程(一个用于水平,另一个用于趋势):

在这里插入图片描述
布朗(Brown)线性趋势模型假定𝛼ൌ𝛽
,即认为水平平滑参数和趋势平滑参数相等。(是Holt线性趋势模型的特例)

4.阻尼趋势模型(Damped trend)

在这里插入图片描述
在这里插入图片描述

5.简单季节性(Simple seasonal)

在这里插入图片描述

6.温特加法模型(Winters’ additive)

在这里插入图片描述

7.温特乘法模型(Winters’ multiplicative)

在这里插入图片描述

九.一元时间序列分析的模型

1.总

  1. 平稳时间序列和白噪声序列
  2. 差分方程和滞后算子
  3. AR模型
  4. MA模型
  5. ARMA模型
  6. ACF和PACF
  7. ARMA模型的估计
  8. AIC和BIC准则
  9. ARIMA模型
  10. SARIMA模型
相关推荐
©️2020 CSDN 皮肤主题: 精致技术 设计师:CSDN官方博客 返回首页