导数卷积 牛客 NTT

本文详细介绍了导数卷积的概念及其计算过程,包括数学公式推导和C++代码实现。通过二进制向上取整、快速幂运算等技术,实现了多项式乘法和求导的高效算法,并应用于导数卷积的计算。代码中包含了多项式加减乘除、求逆、求导和积分等操作,展示了如何进行高效率的数值计算。
摘要由CSDN通过智能技术生成

导数卷积

在这里插入图片描述

solution

f ( x ) = ∑ i = 0 n − 1 a i ∗ x i f(x)=\sum\limits_{i=0}^{n-1}a_i*x^i f(x)=i=0n1aixi

f ( i ) ( x ) = ∑ j = i n − 1 a j j ! ( j − i ) ! f^{(i)}(x)=\sum\limits_{j=i}^{n-1}a_j\frac{j!}{(j-i)!} f(i)(x)=j=in1aj(ji)!j!

= ∑ j = 0 n − 1 a i + j ( i + j ) ! j ! =\sum\limits_{j=0}^{n-1}a_{i+j}\frac{(i+j)!}{j!} =j=0n1ai+jj!(i+j)!

g ( x ) = ∑ i = 0 n − 1 f ( i ) ( x ) ∗ f ( n − i − 1 ) ( x ) g(x)=\sum\limits_{i=0}^{n-1}f^{(i)}(x)*f^{(n-i-1)}(x) g(x)=i=0n1f(i)(x)f(ni1)(x)

= ∑ i = 0 n − 1 ( ∑ j = 0 n − 1 a i + j ( i + j ) ! j ! ∗ ∑ k = 0 n − 1 a n − i − 1 + k ( n − i − 1 + k ) ! k ! ) =\sum\limits_{i=0}^{n-1}(\sum\limits_{j=0}^{n-1}a_{i+j}\frac{(i+j)!}{j!}*\sum\limits_{k=0}^{n-1}a_{n-i-1+k}\frac{(n-i-1+k)!}{k!}) =i=0n1(j=0n1ai+jj!(i+j)!k=0n1ani1+kk!(ni1+k)!)

= ∑ d = 0 n − 1 ∑ i = 0 n − 1 ∑ j = 0 d a i + j ( i + j ) ! j ! ∗ a n − i − 1 + d − j ( n − i − 1 + d − j ) ! ( d − j ) ! =\sum\limits_{d=0}^{n-1}\sum\limits_{i=0}^{n-1}\sum\limits_{j=0}^{d}a_{i+j}\frac{(i+j)!}{j!}*a_{n-i-1+d-j}\frac{(n-i-1+d-j)!}{(d-j)!} =d=0n1i=0n1j=0dai+jj!(i+j)!ani1+dj(dj)!(ni1+dj)!

= ∑ d = 0 n − 1 ( ∑ i = 0 n − 1 − d a i i ! ∗ a n − i − 1 + d ( n − i + d − 1 ) ! ∑ j = 0 d 1 j ! 1 ( d − j ) ! ) =\sum\limits_{d=0}^{n-1}(\sum\limits_{i=0}^{n-1-d}a_{i}i!*a_{n-i-1+d}(n-i+d-1)!\sum\limits_{j=0}^{d}\frac{1}{j!}\frac{1}{(d-j)!}) =d=0n1(i=0n1daii!ani1+d(ni+d1)!j=0dj!1(dj)!1)

code

/*SiberianSquirrel*//*CuteKiloFish*/
#include <bits/stdc++.h>
using namespace std;
#define gcd(a,b) __gcd(a,b)
#define Polynomial vector<int>
#define Inv(x) quick_pow(x, mod - 2)
using ll = long long;
using ull = unsigned long long;
const ll mod = 998244353, mod_g = 3, img = 86583718;//NTT, 多项式三角形
const int N = int(6e5 + 10);

inline int add(int a, int b) {
    return a + b < mod? a + b: a + b - mod;
}
inline int sub(int a, int b) {
    return a - b < 0? a - b + mod: a - b;
}
inline int mul(int a, int b) {
    return 1ll * a * b % mod;
}

void print(Polynomial &a, int len){
    for(int i = 0; i < len; ++ i)
        cout << a[i] << ' ';
    cout << '\n';
}
void exgcd(int a,int b,int &x,int &y){
    if(!b) {
        x = 1; y = 0;
        return;
    }
    exgcd(b, a % b, y, x);
    y -= x * (a / b);
}
int quick_pow(int ans, int p, int res = 1) {
    for(; p; p >>= 1, ans = 1ll * ans * ans % mod)
        if(p & 1) res = 1ll * res * ans % mod;
    return res % mod;
}

Polynomial R;
//二进制向上取整,为方便NTT变换准备。
inline int Binary_Rounding(const int &n) {
    int len = 1; while(len < n) len <<= 1;
    return len;
}
//预处理R数组,准备变换,在每次NTT之前理论都要调用此函数。
inline int Prepare_Transformation(int n){
    int L = 0, len;
    for(len = 1; len < n; len <<= 1) L++;
    R.clear(); R.resize(len);
    for(int i = 0; i < len; ++ i)
        R[i] = (R[i>>1]>>1)|((i&1)<<(L-1));
    return len;
}
void NTT(Polynomial &a, int f){
    int n = a.size();
    for(int i = 0; i < n; ++ i)
        if(i < R[i])swap(a[i], a[R[i]]);
    for(int i = 1; i < n; i <<= 1)
        for(int j = 0, gn = quick_pow(mod_g,(mod - 1) / (i<<1)); j < n; j += (i<<1))
            for(int k = 0, g = 1, x, y; k < i; ++ k, g = 1ll * g * gn % mod)
                x = a[j + k], y = 1ll * g * a[i + j + k] % mod,
                a[j + k] = (x + y) % mod, a[i + j + k] = (x - y + mod) % mod;
    if(f == -1){
        reverse(a.begin() + 1, a.end());
        int inv = Inv(n);
        for(int i = 0; i < n; ++ i) a[i] = 1ll * a[i] * inv % mod;
    }
}

inline Polynomial operator +(const Polynomial &a, const int &b){
    int sizea = a.size(); Polynomial ret = a; ret.resize(sizea);
    for(int i = 0; i < sizea; ++ i)ret[i] = (1ll * a[i] + b + mod) % mod;
    return ret;
}
inline Polynomial operator -(const Polynomial &a, const int &b){
    int sizea = a.size(); Polynomial ret = a; ret.resize(sizea);
    for(int i = 0; i < sizea; ++ i)ret[i] = (1ll * a[i] - b + mod) % mod;
    return ret;
}
inline Polynomial operator *(const Polynomial &a, const int &b){
    int sizea = a.size(); Polynomial ret = a; ret.resize(sizea);
    for(int i = 0; i < sizea; ++ i) ret[i] = (1ll * a[i] * b % mod + mod) % mod;
    return ret;
}
inline Polynomial operator +(const Polynomial &a, const Polynomial &b){
    int sizea = a.size(), sizeb = b.size(), size = max(sizea, sizeb);
    Polynomial ret = a; ret.resize(size);
    for(int i = 0; i < sizeb; ++ i) ret[i] = (1ll * ret[i] + b[i]) % mod;
    return ret;
}
inline Polynomial operator -(const Polynomial &a, const Polynomial &b){
    int sizea = a.size(), sizeb = b.size(), size = max(sizea, sizeb);
    Polynomial ret = a; ret.resize(size);
    for(int i = 0; i < sizeb; ++ i) ret[i] = (1ll * ret[i] - b[i] + mod) % mod;
    return ret;
}
inline Polynomial Inverse(const Polynomial &a){
    Polynomial ret, inv_a;
    ret.resize(1);
    ret[0] = Inv(a[0]); int ed = a.size();
    for(int len = 2; len <= ed; len <<= 1){
        int n = Prepare_Transformation(len << 1);
        inv_a = a; inv_a.resize(n); ret.resize(n);
        for(int i = len; i < n; ++ i) inv_a[i] = 0;
        NTT(inv_a, 1); NTT(ret, 1);
        for(int i = 0; i < n; ++ i)
            ret[i] = 1ll * (2ll - 1ll * inv_a[i] * ret[i] % mod + mod) % mod * ret[i] % mod;
        NTT(ret, -1);
        for(int i = len; i < n; ++ i) ret[i] = 0;
    }
    ret.resize(ed);
    return ret;
}
inline Polynomial operator *(const Polynomial &a, const Polynomial &b){
    Polynomial lsa = a, lsb = b, ret;
    int n = lsa.size(), m = lsb.size();
    n = Prepare_Transformation(n + m);
    lsa.resize(n); lsb.resize(n); ret.resize(n);
    NTT(lsa,1); NTT(lsb,1);
    for(int i = 0; i < n; ++ i) ret[i] = 1ll * lsa[i] * lsb[i] % mod;
    NTT(ret,-1);
    return ret;
}
inline Polynomial operator /(const Polynomial &a, const Polynomial &b){
    Polynomial ret = a, ls = b;
    reverse(ret.begin(), ret.end());
    reverse(ls.begin(), ls.end());
    ls.resize(Binary_Rounding(a.size() + b.size()));
    ls = Inverse(ls);
    ls.resize(a.size() + b.size());
    ret = ret * ls; ret.resize(a.size() - b.size() + 1);
    reverse(ret.begin(), ret.end());
    return ret;
}
inline Polynomial operator %(const Polynomial &a, const Polynomial &b){
    Polynomial ret = a / b;
    ret = ret * b; ret.resize(a.size() + b.size());
    ret = a - ret; ret.resize(a.size() + b.size());
    return ret;
}
inline Polynomial Derivation(const Polynomial &a){
    int size = a.size(); Polynomial ret; ret.resize(size);
    for(int i = 1; i < size; ++ i) ret[i - 1] = 1ll * i * a[i] % mod;
    ret[size - 1] = 0;
    return ret;
}
inline Polynomial Integral(const Polynomial &a){
    int size = a.size(); Polynomial ret; ret.resize(size);
    for(int i = 1; i < size; ++ i) ret[i] = 1ll * Inv(i) * a[i - 1] % mod;
    ret[0] = 0;
    return ret;
}
inline Polynomial Composition_Inverse(const Polynomial &a){
    int n = a.size();
    Polynomial ret, Cinv = a, Pow;
    Cinv.resize(n); ret.resize(n); Pow.resize(n); Pow[0] = 1;
    for(int i = 0; i < n - 1; ++ i) Cinv[i] = Cinv[i + 1]; Cinv[n - 1] = 0;
    Cinv = Inverse(Cinv);
    for(int i = 1; i < n; ++ i){
        Pow = Pow * Cinv; Pow.resize(n);
        ret[i] = 1ll * Pow[i - 1] * Inv(i) % mod;
    }
    return ret;
}
inline Polynomial Logarithmic(const Polynomial &a){
    Polynomial ln_a = Derivation(a) * Inverse(a);
    ln_a.resize(a.size());
    return Integral(ln_a);
}
inline Polynomial Exponential(const Polynomial &a, int Constant = 1){
    Polynomial ret, D; int ed = a.size();
    ret.resize(1); ret[0] = Constant;
    for(int len = 2; len <= ed; len <<= 1){
        D = Logarithmic(ret); D.resize(len);
        D[0] = (1ll * a[0] + 1ll - D[0] + mod) % mod;
        for(int i = 1; i < len; ++i) D[i] = (1ll * a[i] - D[i] + mod) % mod;
        int n = Prepare_Transformation(len<<1);
        ret.resize(n); D.resize(n);
        NTT(ret, 1); NTT(D,1);
        for(int i = 0; i < n; ++ i) ret[i] = 1ll * ret[i] * D[i] % mod;
        NTT(ret, -1);
        for(int i = len; i < (len<<1); ++ i) ret[i] = D[i] = 0;
    }
    ret.resize(ed);
    return ret;
}

int fac[int(1e5 + 10)] = {1}, ifac[int(1e5 + 10)] = {1};

inline void solve() {
    for(int i = 1; i <= int(1e5); ++ i) fac[i] = 1ll * fac[i - 1] * i % mod, ifac[i] = Inv(fac[i]);
    int n; cin >> n; vector<int> a(n + 1), F(n + 1), G(n + 1); for(int i = 0; i < n; ++ i) {
        cin >> a[i];
        F[i] = 1ll * a[i] * fac[i] % mod;
        G[i] = ifac[i];
    }
    F = F * F, G = G * G;
    for(int i = 0; i < n; ++ i) cout << 1ll * F[n + i - 1] * G[i] % mod << ' '; cout << '\n';
}

signed main() {
    ios_base::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
#ifdef ACM_LOCAL
    freopen("input", "r", stdin);
//    freopen("output", "w", stdout);
    signed test_index_for_debug = 1;
    char acm_local_for_debug = 0;
    do {
        if (acm_local_for_debug == '$') exit(0);
        if (test_index_for_debug > 20)
            throw runtime_error("Check the stdin!!!");
        auto start_clock_for_debug = clock();
        solve();
        auto end_clock_for_debug = clock();
        cout << "Test " << test_index_for_debug << " successful" << endl;
        cerr << "Test " << test_index_for_debug++ << " Run Time: "
             << double(end_clock_for_debug - start_clock_for_debug) / CLOCKS_PER_SEC << "s" << endl;
        cout << "--------------------------------------------------" << endl;
    } while (cin >> acm_local_for_debug && cin.putback(acm_local_for_debug));
#else
    solve();
#endif
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值