Alice和Bob赌糖果 牛客 概率DP(赌徒破产模型)

Alice和Bob赌糖果

在这里插入图片描述

solution

f 0 = 0 , f n + m = 1 f_0=0,f_{n+m}=1 f0=0,fn+m=1

f i = ( 1 − p ) f i − 1 + p f i + 1 f_i=(1-p)f_{i-1}+pf_{i+1} fi=(1p)fi1+pfi+1

= > f i + 1 − f i = f i − f i − 1 =>f_{i+1}-f_i=f_i-f_{i-1} =>fi+1fi=fifi1

令 f i = g i f i + 1 = > g i = p 1 − ( 1 − p ) g i − 1 令f_i=g_if_{i+1}=>g_i=\frac{p}{1-(1-p)g_{i-1}} fi=gifi+1=>gi=1(1p)gi1p

= > f n = ∏ i = m n + m − 1 g i =>f_n=\prod\limits_{i=m}^{n+m-1}g_i =>fn=i=mn+m1gi

code

#include <bits/stdc++.h>
using namespace std;
#define double long double
int main() {
    int n, l, r; cin >> n >> l >> r;
    int m, L, R; cin >> m >> L >> R;
    if(m == 0) cout << "1.00000" << '\n';
    else if(n == 0) cout << "0.00000" << '\n';
    else {
        double ali = 0, bob = 0;
        for(int i = l; i <= r; ++ i) {
            for(int j = L; j <= R; ++ j) {
                if(i > j) ali ++;
                if(i < j) bob ++;
            }
        }
        if(ali == 0) cout << "0.00000" << '\n';
        else {
            double p = ali / (ali + bob);
            double q = 1.0 - p;
            vector<double> g(n + m + 1);
            for(int i = 1; i < n + m; ++ i) {
                g[i] = p / (1.0 - q * g[i - 1]);
            }
            double res = 1.0;
            for(int i = n; i < n + m; ++ i) res *= g[i];
            cout << fixed << setprecision(5) << res << '\n';
        }
    }
    return 0;
}
### 前缀算法概述 前缀是一种用于快速计算数组区间的技术。其核心思想是预先构建一个辅助数组 `prefix`,其中存储的是原数组从起始位置到当前位置的所有元素之。这样,在后续查询任意区间的时,可以通过简单的减法操作完成,而无需重复遍历整个区间。 定义如下: 给定数组 `arr` 的长度为 `n`,则前缀数组 `prefix[i]` 表示从索引 0 到 i 所有元素的累加[^1]: ```python prefix[0] = arr[0] for i in range(1, n): prefix[i] = prefix[i-1] + arr[i] ``` 通过上述方式预处理后,对于任何区间 `[l, r]` 的求问题,可以直接利用公式 `sum(l, r) = prefix[r] - prefix[l-1]` 来高效解决(注意边界条件)。这种方法的时间复杂度为 O(n),而在多次查询的情况下效率显著提升。 --- ### 网上的前缀相关题目及解析 网上提供了大量关于前缀的应用场景练习题,帮助学习者深入理解这一概念并灵活运用它解决问题。以下是几个典型的例子及其解决方案简介[^3]: #### 题目一:子数组的最大平均数 I (LeetCode改编) **描述**: 给定整型数组 nums 正整数 k ,找出该数组中连续 k 个数字组成的子数组最大可能的平均值是多少? **思路**: 使用滑动窗口配合前缀技巧来优化时间性能。 实现代码片段如下所示: ```python def findMaxAverage(nums, k): prefix_sum = [0]*(len(nums)+1) for i in range(len(nums)): prefix_sum[i+1]=prefix_sum[i]+nums[i] max_avg=float('-inf') for j in range(k,len(prefix_sum)): current_window=(prefix_sum[j]-prefix_sum[j-k])/k if(current_window>max_avg): max_avg=current_window return max_avg ``` 此方法避免了每次重新计算窗口内的总,从而提高了运行速度。 --- ### 更多资源推荐 除了实际编码训练外,还可以参考一些理论性的文章加深认识。例如,《算法设计手册》提到过类似的累积计数策略可用于更广泛的组合数学领域;另外像力扣官方博也有专门章节讲解动态规划与线性扫描相结合的最佳实践案例分享[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值