Model-Free Reinforcement Learning(无模型强化学习)详解
Model-Free Reinforcement Learning(无模型强化学习)是一种强化学习方法,其中智能体(Agent)不需要事先了解环境的状态转移概率模型(Transition Model)或奖励函数(Reward Function),而是通过与环境的交互直接学习最优策略(Policy)或值函数(Value Function)。这是强化学习的核心方法之一,特别适合于动态、复杂或无法明确建模的环境。
无模型强化学习的核心概念
-
与Model-Based RL的对比:
- Model-Based RL:智能体需要知道环境的模型,例如状态转移概率 ( P(s’|s, a) ) 和奖励函数 ( R(s, a) )。它可以通过动态规划等方法基于模型来推导最优策略。
- Model-Free RL:智能体不需要显式地建模环境的转移概率和奖励函数,而是通过试错直接学习行为策略或值函数。
-
两种主要方法:
- 基于值的方法(Value-Based Methods):学习值函数 ( V(s) ) 或 ( Q(s, a) ),然后通过这些值函数推导策略。
- 基于策略的方法(Policy-Based Methods):直接优化策略 ( \pi(a|s) )。
- Actor-Critic 方法:结合了上述两种方法,使用值函数(Critic)评估策略,使用策略函数(Actor)生成动作。
-
目标:
- 最大化累积奖励 ( G_t = \sum_{k=0}^\infty \gamma^k R_{t+k+1} ),其中 ( \gamma ) 是折扣因子。
无模型强化学习的基础理论
-
值函数的定义:
- 状态值函数:( V^\pi(s) = \mathbb{E}_\pi \left[ G_t | S_t = s \right] )
- 表示在策略 ( \pi ) 下,从状态 ( s ) 开始的期望累积奖励。
<
- 状态值函数:( V^\pi(s) = \mathbb{E}_\pi \left[ G_t | S_t = s \right] )