模型自由(Model-Free)和模型基础(Model-Based)的强化学习

强化学习(Reinforcement Learning, RL)是机器学习中的一个子领域,用于解决决策问题。在强化学习中,主要分为两大类:模型自由(Model-Free)和模型基础(Model-Based)。

什么是模型自由(Model-Free)的强化学习?
模型自由的强化学习不依赖于环境的内部模型。换句话说,它直接从与环境的交互中学习如何采取行动。这种方法的代表性算法有Q-learning和SARSA。

与其他技术的对比: 相较于监督学习,模型自由的强化学习更加强调通过实践来学习。与无监督学习相比,它有明确的目标或奖励机制。

什么是模型基础(Model-Based)的强化学习?
模型基础的强化学习则是依赖于环境的一个内部模型来做决策。它先尝试理解环境,然后基于这个理解来计划最优行动。常见的算法有Value Iteration和Policy Iteration。

与其他技术的对比: 模型基础的RL与生成模型(如GANs)有些相似,都试图理解数据生成的过程。但模型基础RL更侧重于通过这个理解来做出最优决策。

总结
模型自由方法更简单但通常需要更多的样本;模型基础方法需要更复杂的计算但通常更精确和数据高效。两者常常根据应用场景来选择。

场景:自动驾驶汽车
假设我们要开发一个自动驾驶汽车的系统。这个系统需要通过实时的传感器数据来决策,例如:什么时候刹车、加速、转弯等。

模型自由(Model-Free)的强化学习
在这个应用中,一个模型自由的方法可能会直接通过与环境(即,道路、交通规则等)的交互来学习最佳的驾驶策略。汽车每做出一个动作(例如,加速、减速、转弯)都会得到一个即时的反馈(奖励或惩罚),然后用这些数据来不断更新它的决策策略。

与其他技术的对比: 这个过程与监督学习的主要不同在于,它不是从标记好的数据集中学习,而是从实时反馈中学习。这与一些基于规则的系统(如硬编码的if-else语句)相比,更加灵活和自适应。

模型基础(Model-Based)的强化学习
模型基础的方法会首先尝试建立一个道路和交通环境的模型,然后用这个模型来预测各种可能的未来状态。例如,它会模拟如果车速提高或降低,其他车辆可能的反应是什么。基于这些预测,它会计算出最优的驾驶策略。

与其他技术的对比: 这种方法与模拟(如,物理引擎或者交通模拟器)有一些相似性。但与此同时,它也利用了机器学习来优化决策,使得它比传统的模拟更加智能和高效。

总结
模型自由方法更侧重于从实际经验中学习,而模型基础方法则尝试先理解环境再做决策。模型自由通常更简单、更快,但可能需要更多的数据。模型基础则更为精确,但计算成本高。在自动驾驶汽车这个场景中,往往会用到这两种方法的结合,以达到更好的效果。

示例:推荐系统
假设我们正在开发一个电影推荐系统。该系统的任务是根据用户的观看历史和反馈来推荐新电影。

模型自由(Model-Free)的强化学习
在一个模型自由的推荐系统中,我们可能使用Q-learning来进行操作。

import numpy as np

假设有5部电影(状态空间大小为5)

n_movies = 5

初始化Q-table

Q_table = np.zeros(n_movies)

奖励示例,比如用户观看电影后的评分

rewards = [1, 2, -1, 3, 0]

学习率和折扣因子

alpha = 0.1
gamma = 0.9

模拟用户与环境互动

for episode in range(100):
# 随机选择一个电影来推荐(这里简化了选择动作的过程)
action = np.random.choice(range(n_movies))

# 得到奖励(用户反馈)
reward = rewards[action]

# Q-learning 更新规则
Q_table[action] = (1 - alpha) * Q_table[action] + alpha * (reward + gamma * np.max(Q_table))

推荐具有最高 Q 值的电影

recommended_movie = np.argmax(Q_table)
与其他技术的对比: 这与协同过滤不同,因为它是基于环境反馈(用户评分)实时更新的,而不是一次性地从大量数据中进行训练。

模型基础(Model-Based)的强化学习
在模型基础的版本中,我们首先尝试预测用户对每部电影的评分,然后基于这些预测来做决策。

from sklearn.linear_model import LinearRegression

用户观看历史和评分

watch_history = [[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [1, 0, 0, 0, 0]]
user_ratings = [1, 2, 1]

使用线性回归作为环境模型

model = LinearRegression()
model.fit(watch_history, user_ratings)

预测所有电影的评分

predicted_ratings = model.predict([[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]])

推荐预测评分最高的电影

recommended_movie = np.argmax(predicted_ratings)
与其他技术的对比: 这更像是基于内容的推荐系统,但它使用预测的用户评分来做出决策,这点与传统的基于内容的推荐有所不同。

总结
在模型自由的例子中,我们直接基于用户反馈(即奖励)来更新推荐策略。在模型基础的例子中,我们首先尝试建立一个用户评分的预测模型,然后用这个模型来做出推荐。两者在代码实现和思路上都有明显的差异。模型自由通常更为简单和直观,但可能需要更多的数据。模型基础则尝试通过理解用户行为来做出更精确的推荐,但可能更为复杂和计算密集

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值