联邦学习3 Communication-Efficient Learning of Deep Networksfrom Decentralized Data 开山论文

提出背景:

数据隐私敏感、数量庞大

本文贡献:

1、提出分散式的方法:(联邦学习)将训练数据分布在移动设备上,并通过聚合本地计算的更新来学习共享模型。 

2、提出了一种基于迭代模型平均的深度网络联合学习的实用方法。FederatedAveraging 算法,该算法将每个客户端上的局部随机梯度下降 (SGD) 与执行模型平均的服务器相结合。

3、在五种不同的模型架构和四个数据集训练

联邦优化我们将联邦学习中隐含的优化问题称为联邦优化,它与分布式优化建立了联系(和对比)。 联邦优化有几个关键属性,使其与典型的分布式优化问题不同:

 


————————————————
别人的笔记:https://blog.csdn.net/qq_42328228/article/details/109136675

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值