提出背景:
数据隐私敏感、数量庞大
本文贡献:
1、提出分散式的方法:(联邦学习)将训练数据分布在移动设备上,并通过聚合本地计算的更新来学习共享模型。
2、提出了一种基于迭代模型平均的深度网络联合学习的实用方法。FederatedAveraging 算法,该算法将每个客户端上的局部随机梯度下降 (SGD) 与执行模型平均的服务器相结合。
3、在五种不同的模型架构和四个数据集训练
联邦优化我们将联邦学习中隐含的优化问题称为联邦优化,它与分布式优化建立了联系(和对比)。 联邦优化有几个关键属性,使其与典型的分布式优化问题不同:
————————————————
别人的笔记:https://blog.csdn.net/qq_42328228/article/details/109136675