This is Chinese version
[中文版]
Probability density function(pdf) of normal distribution is
f
(
x
)
=
1
2
π
σ
e
−
(
x
−
μ
)
2
2
σ
2
f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}}
f(x)=2πσ1e−2σ2(x−μ)2
Mean
E ( x ) = ∫ − ∞ + ∞ x f ( x ) d x = ∫ − ∞ + ∞ 1 2 π σ x e − ( x − μ ) 2 2 σ 2 d x = ∫ − ∞ + ∞ 1 2 π σ ( x − μ ) e − ( x − μ ) 2 2 σ 2 d x + μ ∫ − ∞ + ∞ 1 2 π σ e − ( x − μ ) 2 2 σ 2 d x = ∫ − ∞ + ∞ 1 2 π σ x e − x 2 2 σ 2 d x + μ ∫ − ∞ + ∞ f ( x ) d x = μ \begin{aligned} E\left ( x \right )&=\int_{-\infty}^{+\infty}xf(x)dx\\ &=\int_{-\infty }^{+\infty }\frac{1}{\sqrt{2\pi}\sigma}xe^{-\frac{\left(x-\mu\right)^{2}}{2\sigma^{2}}}dx\\ &=\int_{-\infty }^{+\infty }\frac{1}{\sqrt{2\pi}\sigma}(x-\mu)e^{-\frac{\left(x-\mu\right)^{2}}{2\sigma^{2}}}dx+\mu\int_{-\infty }^{+\infty }\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{\left(x-\mu\right)^{2}}{2\sigma^{2}}}dx\\ &=\int_{-\infty }^{+\infty }\frac{1}{\sqrt{2\pi}\sigma}xe^{-\frac{x^{2}}{2\sigma^{2}}}dx+\mu\int_{-\infty}^{+\infty}f(x)dx\\ &=\mu \end{aligned} E(x)=∫−∞+∞xf(x)dx=∫−∞+∞2πσ1xe−2σ2(x−μ)2dx=∫−∞+∞2πσ1(x−μ)e−2σ2(x−μ)2dx+μ∫−∞+∞2πσ1e−2σ2(x−μ)2dx=∫−∞+∞2πσ1xe−2σ2x2dx+μ∫−∞+∞f(x)dx=μ
Focus on the penult line, the 1st integral is 0 due to symmetry, the 2nd equals 1 due to the pdf normalization property.
Variance
A.
∫
−
∞
+
∞
f
(
x
)
d
x
=
∫
−
∞
+
∞
1
2
π
σ
e
−
x
2
2
σ
2
d
x
=
1
2
π
σ
[
(
x
e
−
x
2
2
σ
2
)
−
∞
+
∞
−
∫
−
∞
+
∞
x
d
e
−
x
2
2
σ
2
]
=
∫
−
∞
+
∞
1
2
π
σ
3
x
2
e
−
x
2
2
σ
2
=
1
\begin{aligned} \int_{-\infty}^{+\infty}f(x)dx&=\int_{-\infty }^{+\infty }\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{x^{2}}{2\sigma^{2}}}dx\\ &=\frac{1}{\sqrt{2\pi}\sigma}\left [ \left ( xe^{-\frac{x^{2}}{2\sigma^{2}}} \right )_{-\infty}^{+\infty} -\int_{-\infty }^{+\infty }xde^{-\frac{x^{2}}{2\sigma^{2}}}\right] \\ &=\int_{-\infty }^{+\infty }\frac{1}{\sqrt{2\pi}\sigma^{3}}x^{2}e^{-\frac{x^{2}}{2\sigma^{2}}}\\ &=1 \end{aligned}
∫−∞+∞f(x)dx=∫−∞+∞2πσ1e−2σ2x2dx=2πσ1[(xe−2σ2x2)−∞+∞−∫−∞+∞xde−2σ2x2]=∫−∞+∞2πσ31x2e−2σ2x2=1
Follows from the pdf normalization property.
Focus on the 2nd line, where partial integral is been used.
B.
D
(
x
)
=
E
[
(
x
−
μ
)
2
]
=
∫
−
∞
+
∞
1
2
π
σ
(
x
−
μ
)
2
e
−
(
x
−
μ
)
2
2
σ
2
d
x
=
∫
−
∞
+
∞
1
2
π
σ
x
2
e
−
x
2
2
σ
2
\begin{aligned} D(x)&=E\left[(x-\mu)^2\right]\\ &=\int_{-\infty}^{+\infty}\frac{1}{\sqrt{2\pi}\sigma}(x-\mu)^2e^{-\frac{(x-\mu)^2}{2\sigma^2}}dx\\ &=\int_{-\infty}^{+\infty}\frac{1}{\sqrt{2\pi}\sigma}x^2e^{-\frac{x^2}{2\sigma^2}} \end{aligned}
D(x)=E[(x−μ)2]=∫−∞+∞2πσ1(x−μ)2e−2σ2(x−μ)2dx=∫−∞+∞2πσ1x2e−2σ2x2
Using this in A yields
D
(
x
)
=
σ
2
D(x)=\sigma^2
D(x)=σ2