将梯度下降算法应用到线性回归中的数学推导及图示

线性回归和梯度下降的形式表达

线性回归:

假设函数
h θ ( x ) = θ 0 + θ 1 x (1) h_\theta (x)=\theta_0+\theta_1x \tag1 hθ(x)=θ0+θ1x(1)
代价函数
J ( θ ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 (2) J(\theta)=\frac {1} {2m} \sum_{i=1}^m(h_\theta(x^{(i)})-y^{(i)})^2 \tag2 J(θ)=2m1i=1m(hθ(x(i))y(i))2(2)
梯度下降:
 repeat until convergence { θ j = θ j − α ∂ J ( θ 0 , θ 1 ) ∂ θ j ( f o r   j = 0   a n d   j = 1 ) } (3) \begin{aligned} &\text{ repeat\ until\ convergence}\{\\ &\qquad \theta_j = \theta_j - \alpha \frac {\partial J(\theta_0,\theta_1)}{\partial\theta_j}\qquad (for\ j =0\ and\ j=1)\\ &\} \end{aligned} \tag3  repeat until convergence{θj=θjαθjJ(θ0,θ1)(for j=0 and j=1)}(3)

应用计算

首先先计算代价函数对于两个参数 θ 0 , θ 1 \theta_0,\theta_1 θ0θ1的偏导数:
∂ ∂ θ j J ( θ 0 , θ 1 ) = ∂ ∂ θ j 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 = ∂ ∂ θ j 1 2 m ∑ i = 1 m ( θ 0 + θ 1 x ( i ) − y ( i ) ) 2 (4) \begin{aligned} \frac {\partial }{\partial \theta_j}J(\theta_0,\theta_1) &=\frac {\partial }{\partial \theta_j} \frac {1}{2m} \sum_{i=1}^m(h_\theta(x^{(i)})-y^{(i)})^2 \\ &=\frac {\partial }{\partial \theta_j} \frac {1}{2m} \sum_{i=1}^m(\theta_0+\theta_1x^{(i)}-y^{(i)})^2 \end{aligned} \tag4 θjJ(θ0,θ1)=θj2m1i=1m(hθ(x(i))y(i))2=θj2m1i=1m(θ0+θ1x(i)y(i))2(4)
代价函数对于参数 θ 0 \theta_0 θ0的偏导数:
∂ ∂ θ 0 J ( θ 0 , θ 1 ) = 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) (5) \frac {\partial }{\partial \theta_0}J(\theta_0,\theta_1) = \frac {1}{m} \sum_{i=1}^m (h_\theta(x^{(i)})-y^{(i)}) \tag5 θ0J(θ0,θ1)=m1i=1m(hθ(x(i))y(i))(5)
代价函数对于参数 θ 1 \theta_1 θ1的偏导数:
∂ ∂ θ 1 J ( θ 0 , θ 1 ) = 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) ⋅ x ( i ) (6) \frac {\partial }{\partial \theta_1}J(\theta_0,\theta_1) = \frac {1}{m} \sum_{i=1}^m (h_\theta(x^{(i)})-y^{(i)})\cdot x^{(i)} \tag6 θ1J(θ0,θ1)=m1i=1m(hθ(x(i))y(i))x(i)(6)
将其带回到梯度下降算法中去:
 repeat until convergence { θ 0 = θ 0 − α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) θ 1 = θ 1 − α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) ⋅ x ( i ) } (3) \begin{aligned} &\text{ repeat\ until\ convergence}\{\\ &\qquad \theta_0 = \theta_0 - \alpha \frac {1}{m} \sum_{i=1}^m (h_\theta(x^{(i)})-y^{(i)})\\ &\qquad \theta_1 = \theta_1 - \alpha \frac {1}{m} \sum_{i=1}^m (h_\theta(x^{(i)})-y^{(i)}) \cdot x^{(i)} \\ &\} \end{aligned} \tag3  repeat until convergence{θ0=θ0αm1i=1m(hθ(x(i))y(i))θ1=θ1αm1i=1m(hθ(x(i))y(i))x(i)}(3)
对于线性回归的代价函数来说,他总是这样的弓形函数(bow-shaped function),专业名称叫做凸函数(convex function),对于该函数来说,不论初始点在哪里,最后都可以保证收敛到同一个全局最优点,因为该函数只有一个全局最优点,无局部最优点

image-20220125160431300

接下来看看如何一步步优化到全局最优点

首先我们从 θ 0 = 900 , θ 1 = − 0.1 \theta_0=900,\theta_1=-0.1 θ0=900,θ1=0.1开始,此时假设函数为 h ( x ) = − 900 − 0.1 x h(x)=-900-0.1x h(x)=9000.1x

image-20220125160744167

对其应用一次后梯度下降算法后,可以看到我们的假设函数发生了一点变化

image-20220125160949716

然后不断应用梯度下降算法,直到我们下降到收敛点(中心的点),其路线如右图所示:

image-20220125161139424

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hydrion-Qlz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值