【图论及其运用 — 电子科技大学】(九)第九章 有向图

(一)、有向图的概念与性质

1、概念

定义1 一个有向图 D D D是指一个三元组 ( V ( D ) , E ( D ) , ϕ D ) (V(D) , E(D), \phi_D) (V(D),E(D),ϕD)。其中, V ( D ) V(D) V(D)是非空的顶点集合, E ( D ) E(D) E(D)是不与 V ( D ) V(D) V(D)相交的边集合,而 ϕ D \phi_D ϕD 是关联函数,它使 D D D的每条边对应 D D D的有序顶点对 (不必相异即点对中的点允许相同)

如果 e e e D D D的一条边,而 u u u v v v是使得 ϕ D ( u , v ) = e \phi_D(u,v)=e ϕD(u,v)=e的顶点,那么称 e e e是由 u u u连接到 v v v,记为 e = < u , v > e=<u, v> e=<u,v>。同时,称 u u u e e e弧尾(起点), v v v e e e弧头(终点)

注: 有向图可以简单地理解为“边有方向的图”。



定义2 在一个有向图 D D D中,具有相同起点和终点的边称为平行边。两点间平行边的条数称为该两点间的重数。

例如,在上图中, e 6 e_6 e6 e 7 e_7 e7是平行边。

定义3 在一个有向图 D D D中,如果没有有向环和平行边,则称该图为简单有向图

定义4 D D D是有向图,去掉 D D D中边的方向后得到的无向图 G G G,称为 D D D基础图。又若 G G G是无向图,给 G G G的每条边加上方向后得到的有向图 D D D称为 G G G的一个定向图(一个有向图的基础图唯一,而一个图的定向图不唯一,有方向)

定义5 D D D是有向图, v v v D D D中顶点。以 v v v为始点的边的条数称为点 v v v出度,以 v v v为端点的一个自环算 1 1 1度。点 v v v的出度记为 d + ( v ) d^+(v) d+(v); 以 v v v为终点的边的条数称为点 v v v入度,以 v v v为端点的一个自环算 1 1 1度。点 v v v的入度记为 d − ( v ) d^-(v) d(v);

v v v的出度与入度之和称为点 v v v,记为 d ( v ) d(v) d(v)



首先要假定连通,因为不连通,我们可以分别对每个连通分支处理即可。

如果图是欧拉图,可以根据 Fluery 算法走出一条欧拉环游,依次标方向即可,这样就保证了,欧拉环游上每个点的入度和出度相等,相减为 0,满足。

如果不是欧拉图,则进行奇度点配对,将奇度点进行连线,这样就得到了一个欧拉图。

2、性质

定理1 D = ( V , E ) D=(V, E) D=(V,E)是有向图,则:
∑ v ∈ V ( D ) d + ( v ) = ∑ v ∈ V ( D ) d − ( v ) = m ( D ) \sum_{v\in V(D)}d^+(v)=\sum_{v\in V(D)}d^-(v)=m(D) vV(D)d+(v)=vV(D)d(v)=m(D)

证明: 由出度与入度的定义每条边为出度贡献 1 度,为入度贡献 1 度,所以每一条边都对于一个入度一个出度,等式成立。

3、有向图的矩阵表示

定义6 D = ( V , E ) D=(V,E) D=(V,E)是有向图,其中 V = { v 1 , v 2 , … , v n } , E = { e 1 , e 2 , … , e m } V=\{v_1, v_2,…, v_n\}, E=\{e_1, e_2,…, e_m\} V={v1,v2,,vn},E={e1,e2,,em}

(1) 称 A ( D ) = ( a i j ) n × n A(D)=(a_{ij})_{n×n} A(D)=(aij)n×n D D D的邻接矩阵,其中 a i j a_{ij} aij v i v_i vi为始点, v j v_j vj为终点的边的条数, 1 ≤ i ≤ n , 1 ≤ j ≤ n 1 ≤ i ≤ n,1 ≤ j ≤ n 1in,1jn

(2) 若 D D D无环。称矩阵 M = ( m i j ) n × m M=(m_{ij})_{n×m} M=(mij)n×m D D D的关联矩阵,其中



(二)、有向图的连通性(重点)

1、相关概念

(1) 有向途径(闭途径)、迹(闭迹)和路(圈)

上面概念与无向图中相关概念类似。

(2) 有向图中顶点间的连通性

定义7 D = ( V , E ) D=(V, E) D=(V,E)是有向图, u u u v v v D D D中两个顶点。

1) D D D中存在一条 ( u , v ) (u,v) (uv)路,则称 u u u可达 v v v, 记为 u → v u→v uv。规定 u → u u →u uu
2) D D D中存在一条 ( u , v ) (u,v) (uv)路或 ( v , u ) (v, u) (v,u)路,则称 u u u v v v单向连通的。
3) D D D中存在一条 ( u , v ) (u,v) (uv)路和一条 ( v , u ) (v, u) (v,u)路,则称 u u u v v v双向连通的或强连通的。

定义8 D = ( V , E ) D=(V, E) D=(V,E)是有向图。
1) D D D的基础图是连通的,称 D D D弱连通图
2) D D D的中任意两点是单向连通的,称 D D D单向连通图
3) D D D的中任意两点是双向连通的,称 D D D强连通图

强连通一定是单向连通,弱连通,单向连通一定是弱连通

关于强连通图,我们有如下结论:
定理1: 有向图 D = ( V , E ) D=(V,E) D=(V,E)是强连通的,当且仅当 D D D中存在包含 D D D中所有顶点的回路。



定义9 D D D是有向图 D = ( V , E ) D=(V, E) D=(V,E)的一个子图。如果 D D D是强连通的(单向连通的、弱连通的),且 D D D中不存在真包含 D D D的子图是强连通的(单向连通的、弱连通的), 则称 D D D D D D的一个强连通分支(单向连通分支、弱连通分支)。

强连通分支: 一个极大的强连通子图
单向连通分支: 一个极大的单向连通子图
弱连通分支: 一个极大的弱连通子图



定理2: 有向图 D = ( V , E ) D=(V,E) D=(V,E)的每个点位于且仅位于 D D D的某个强(弱)连通分支中。

证明: 对于弱连通分支情形,命题结论是显然的。
对于强连通分支情形,因为不难证明: D D D中顶点间的强连通关系是等价关系。该等价关系对应的等价类在 D D D中的导出子图必然是 D D D的一个强分支。而 D D D的一个强分支包含的顶点也必然是该等价关系的一个等价类。
但是,对于单向连通分支来说, D D D的某个顶点,可能会分属于 D D D的若干个单向连通分支。原因是单向连通关系不是等价关系。

(三)、图的定向问题

对于任意一个无环图 G G G,要对其作强连通定向,需要解决两个问题:一是强连通定向的存在性问题,二是如何定向问题。

1、存在性问题

定理3 ( 罗宾斯,1939) 非平凡连通图 G G G具有强连通定向当且仅当 G G G 2 2 2边连通的。(即边连通度至少为2,换句话就是图没有割边)

罗宾斯(1915—2001), 美国拓扑学家,数理统计学家。

2、强连通定向算法(只要会执行就行,不用理解为什么)

该算法采用顶点标号方法给边标上方向。设 G = ( V , E ) G=(V, E) G=(V,E) 2 2 2边连通图。


第三次上交作业
P143—146 习题6 :2,3,4,17,19,20.
P187—190 习题7 :1,2,5,28, 32.

  • 13
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值