Yolov8_obb旋转框训练、测试、推理

一、代码准备

可以去官网下载https://github.com/ultralytics

环境配置同Yolov5

二、DOTA1.0数据集转换

(1)原始数据集格式如下

937.0 913.0 921.0 912.0 923.0 874.0 940.0 875.0 small-vehicle 0

(2)通过坐标在 0 和 1 之间归一化的四个角点来指定边界框,支持的 OBB 数据集格式如下

class_index, x1, y1, x2, y2, x3, y3, x4, y4

(3)新建一个pre_data.py文件实现标签转换

from ultralytics.data.converter import convert_dota_to_yolo_obb

convert_dota_to_yolo_obb('./datasets/DOTAv1')

注意,如果你的数据是jpg或者其他格式,记得注释以下几行

(4)跳转到convert_dota_to_yolo_obb.py函数,对class_mapping进行修改

class_mapping = {
    "plane": 0,
    "baseball-diamond": 1,
    "bridge": 2,
    "ground-track-field": 3,
    "small-vehicle": 4,
    "large-vehicle": 5,
    "ship": 6,
    "tennis-court": 7,
    "basketball-court": 8,
    "storage-tank": 9,
    "soccer-ball-field": 10,
    "roundabout": 11,
    "harbor": 12,
    "swimming-pool": 13,
    "helicopter": 14,
}

(5)在ultralytics-main下新建一个数据集文件夹并设置如下结构,

其中,images/trainimages/val分别放置DOTA数据集切割后的原始图片文件labels/train_originallabels/val_original分别放置原始的标签文件labels/trainlabels/val,然后运行步骤(3)的代码,运行结束转换后的标签会保存在labels/train和labels/val中,转换后的格式如下。

4 0.915039 0.891602 0.899414 0.890625 0.901367 0.853516 0.917969 0.854492

三、运行代码

(1)下载预训练权重(也可以不下载,后面运行train.py时候也会自己下载)

https://docs.ultralytics.com/tasks/obb/

(2)构建数据集,按照下面目录格式,其中test可为空,一定要对应。

(3)创建一个dota8-obb.yaml,然后将路径和类别改成自己的。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# DOTA 1.0 dataset https://captain-whu.github.io/DOTA/index.html for object detection in aerial images by Wuhan University
# Documentation: https://docs.ultralytics.com/datasets/obb/dota-v2/
# Example usage: yolo train model=yolov8n-obb.pt data=DOTAv1.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── dota1  ← downloads here (2GB)

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/DOTAv1 # dataset root dir
train: images/train # train images (relative to 'path') 1411 images
val: images/val # val images (relative to 'path') 458 images
# test: images/test # test images (optional) 937 images

# Classes for DOTA 1.0
names:
  0: plane
  1: ship
  2: storage tank
  3: baseball diamond
  4: tennis court
  5: basketball court
  6: ground track field
  7: harbor
  8: bridge
  9: large vehicle
  10: small vehicle
  11: helicopter
  12: roundabout
  13: soccer ball field
  14: swimming pool

(4)修改yolov8-obb.yaml,修改nc即可.

yolov8-obb.yaml的路径是在yolo/ultralytics/cfg/models/v8下,修改nc为自己的类别数

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 Oriented Bounding Boxes (OBB) model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 15 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, C2f, [512]] # 12

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 3, C2f, [256]] # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]] # cat head P4
  - [-1, 3, C2f, [512]] # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]] # cat head P5
  - [-1, 3, C2f, [1024]] # 21 (P5/32-large)

  - [[15, 18, 21], 1, OBB, [nc, 1]] # OBB(P3, P4, P5)

(5)新建一个train.py,我使用的权重是“yolov8n-obb.pt”,设置相关参数如下,即可运行。值得注意的是:如果你使用的权重是“yolov8n-obb.pt”,只需要把下面代码中的配置文件yolov8-obbs.yaml改成yolov8n-obb.yaml,依次类推。

from ultralytics import YOLO

def main():
    # Load a model
    model = YOLO("yolov8n-obb.yaml").load('yolov8n-obb.pt')  # build a new model from YAML

    # Train the model
    results = model.train(data="datasets/DOTAv1.yaml", epochs=100, imgsz=640, task = 'obb',                 device=0, workers=4, batch=4)

if __name__ == '__main__':
    main()

四、验证

from ultralytics import YOLO
 
def main():
    model = YOLO(r'runs/obb/train/weights/best.pt')
    model.val(data='datasets/DOTAv1.yaml', imgsz=640, batch=4, workers=4)
 
    # 如果你有test就用下面的语句
    # model.val(data='datasets/DOTAv1.yaml',split='test', imgsz=640, batch=4, workers=4)
 
if __name__ == '__main__':
    main()

 五、推理

from ultralytics import YOLO
from PIL import Image

# Load a model
model = YOLO("runs/obb/train/weights/best.pt")  # pretrained YOLO11n model

# Run batched inference on a list of images
results = model(["datasets/0496.png", "datasets/0497.png"])  # return a list of Results objects

# Process results list
for idx, result in enumerate(results):
    print(result)
    boxes = result.boxes  # Boxes object for bounding box outputs
    masks = result.masks  # Masks object for segmentation masks outputs
    keypoints = result.keypoints  # Keypoints object for pose outputs
    probs = result.probs  # Probs object for classification outputs
    obb = result.obb  # Oriented boxes object for OBB outputs
    # result.show()  # display to screen
    im_bgr = result.plot(labels=False)  # BGR-order numpy array
    im_rgb = Image.fromarray(im_bgr[..., ::-1])  # RGB-order PIL image
    im_rgb.save("result{}.jpg".format(idx))

    # result.save(filename="result{}.jpg".format(idx))  # save to disk
### 使用YOLOv8进行带有旋转(OBB)的目标检测训练 #### 修改配置文件 为了适应特定的数据集,在`ultralytics\ultralytics\cfg\models\v8`路径下的`yolov8-obb.yaml`需要被调整。主要改动在于设置类别的数量(`nc`)以及对应的名称映射,这一步骤对于确保模型能够识别自定义数据集中不同类型的对象至关重要[^3]。 ```yaml # yolov8-obb.yaml snippet nc: 4 # 类别数目 names: 0: ture 1: ban 2: man 3: di ``` 此外,还需编辑位于`yolov8/ultralytics/data/converter.py`中的代码片段来适配个人项目的标签体系,比如更新`class_mapping`字段以反映新的分类标准。 #### 加载预训练权重与构建模型实例 当准备就绪后,可以通过Python脚本加载YOLOv8 OBB版本的预训练权重或基于YAML描述新建一个未经过预先学习过程的新模型: ```python from ultralytics import YOLO model = YOLO('yolov8n-obb.pt') # 载入已有的预训练模型(推荐用于继续训练) # 或者 model = YOLO('yolov8n-obb.yaml').load('yolov8n.pt') # 根据模板创建并迁移旧版参数 ``` 上述两种方式均可实现模型初始化;其中一种方法是从官方提供的基础架构出发建立全新的网络结构而后赋予初始权值,另一种则是直接利用现有的高质量预训练成果作为起点[^2]。 #### 启动训练进程 最后,通过调用`.train()`函数指定必要的超参数如迭代轮次(`epochs`)、输入图像尺寸(`imgsz`)等,并提供指向数据集元信息(.yaml)的具体位置即可启动整个训练流程: ```python results = model.train( data='/home/user/path/to/dataset/config.yaml', epochs=100, imgsz=640 ) ``` 此命令会依据给定条件自动完成从读取样本到优化直至保存最终结果的一系列操作,期间产生的日志记录有助于监控进度和性能表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值