Matplotlib 散点图(scatter)

该博客详细介绍了如何利用Python的Matplotlib库绘制散点图,包括设置图的大小、颜色、标记类型等。示例代码展示了如何用不同颜色和形状的标记表示不同数据,并对年份和生产总值进行可视化。同时,解释了scatter函数的关键参数,如x和y值、标记颜色和大小等,帮助理解数据可视化过程。
摘要由CSDN通过智能技术生成

Matplotlib 散点图(scatter)

代码速览

# 导包
import numpy as np
import matplotlib.pyplot as plt

# 设置中文字符
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.rcParams['axes.unicode_minus'] = False

data = np.load('./data/国民经济核算季度数据.npz', allow_pickle=True)
name = data['columns']
values = data['values']  # 二维数组


# 设置图的大小figsize
plt.figure(figsize=(8, 7))
# 不同的values用不同的颜色来表示
plt.scatter(values[:, 0], values[:, 3], marker='o', c='red', alpha=0.5)  
plt.scatter(values[:, 0], values[:, 4], marker='D', c='blue', alpha=0.5)  
plt.scatter(values[:, 0], values[:, 5], marker='v', c='yellow', alpha=0.5)  

plt.xlabel('年份')
plt.ylabel('生产总值')

plt.xticks(range(0, 70, 4), values[range(0, 70, 4), 1], rotation=45)

plt.title('lines')
# 做好的图展示一下 -每个季度的房地产业增加值_当季值(亿元)
plt.show()

在这里插入图片描述

scatter讲解

scatter(x, y, s=None, c=None, marker=None, cmap=None, 
 norm=None, vmin=None, vmax=None, alpha=None,
 linewidths=None,  verts=None, edgecolors=None,
  hold=None, data=None, **kwargs)

x : x 值

y : y 值

sz :标记面积

c : 标记颜色

  • 选项说明对应的RGB三元数
    ‘red’或’r’[1 0 0]
    ‘green’或’g’绿[0 1 0]
    ‘blue’或’b’[0 0 1]
    ‘yello’或’y’[1 1 0]
    ‘magenta’或’m’品红[1 0 1]
    ‘cyan’或’c’青蓝[0 1 1]
    ‘white’或’w’[1 1 1]
    ‘black’或’b’[0 0 0]

mkr - 标记类型

  • 说明
    ‘o’圆圈
    ‘+’加号
    ‘*’星号
    ‘.’
    ‘x’叉号
    ‘square’或’s’方形
    ‘diamon’或’d’菱形
    ‘^’上三角
    ‘v’下三角
    ‘<’右三角
    ‘>’左三角
    ‘pentagram’或’p’五角星
    ‘hexagram’或’h’六角星
    ‘none’无标记

‘filled’ : 用于填充标记内部的选项

ax :目标坐标区

‘MarkerEdgeColor’ : 标记轮廓颜色

‘MarkerFaceColor’ : 标记填充颜色

‘LineWidth’ :标记边缘的宽度

edgecolors : 轮廓颜色,参数形式和color类似

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值