【动手学深度学习】--长短期记忆网络LSTM

本文介绍了长短期记忆网络LSTM的工作原理,包括门控记忆元、输入门、忘记门和输出门的概念,以及如何从头实现一个LSTM模型。通过实例展示了从加载数据集到训练的过程,最后提到了使用高级API进行简洁实现的方法。
摘要由CSDN通过智能技术生成

长短期记忆网络LSTM

学习视频:长短期记忆网络(LSTM)【动手学深度学习v2】

官方笔记:长短期记忆网络(LSTM)

长期以来,隐变量模型存在着长期信息保存和短期输入缺失的问题,解决这一问题的最早方法之一是长短期存储器(LSTM),它有许多与GRU一样的属性,有趣的是,长短期记忆网络的设计比门控循环单元稍微复杂一些, 却比门控循环单元早诞生了近20年。

1.门控记忆元

可以说,长短期记忆网络的设计灵感来自于计算机的逻辑门。 长短期记忆网络引入了记忆元(memory cell),或简称为单元(cell)。 有些文献认为记忆元是隐状态的一种特殊类型, 它们与隐状态具有相同的形状,其设计目的是用于记录附加的信息。 为了控制记忆元,我们需要许多门。 其中一个门用来从单元中输出条目,我们将其称为输出门(output gate)。 另外一个门用来决定何时将数据读入单元,我们将其称为输入门(input gate)。 我们还需要一种机制来重置单元的内容,由遗忘门(forget gate)来管理, 这种设计的动机与门控循环单元相同, 能够通过专用机制决定什么时候记忆或忽略隐状态中的输入。

1.1输入门、忘记门、输出门

  • 忘记门:将值朝0减少
  • 输入门:决定不是忽略掉输入数据
  • 输出门:决定是不是使用隐状态

就如在门控循环单元中一样, 当前时间步的输入和前一个时间步的隐状态 作为数据送入长短期记忆网络的门中,如下图所示, 它们由三个具有sigmoid激活函数的全连接层处理, 以计算输入门、遗忘门和输出门的值。 因此,这三个门的值都在(0,1)的范围内。

image-20230909153058460

1.2候选记忆元

image-20230909153136156

1.3记忆元

image-20230909153206499

1.4隐状态

image-20230909153227773

2.从零实现

2.1加载数据集

import torch
from torch import nn
from d2l import torch as d2l

batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)

2.2初始化模型参数

接下来,我们需要定义和初始化模型参数。 如前所述,超参数num_hiddens定义隐藏单元的数量。 我们按照标准差0.01的高斯分布初始化权重,并将偏置项设为0。

def get_lstm_params(vocab_size, num_hiddens, device):
    num_inputs = num_outputs = vocab_size

    def normal(shape):
        return torch.randn(size=shape, device=device)*0.01

    def three():
        return (normal((num_inputs, num_hiddens)),
                normal((num_hiddens, num_hiddens)),
                torch.zeros(num_hiddens, device=device))

    W_xi, W_hi, b_i = three()  # 输入门参数
    W_xf, W_hf, b_f = three()  # 遗忘门参数
    W_xo, W_ho, b_o = three()  # 输出门参数
    W_xc, W_hc, b_c = three()  # 候选记忆元参数
    # 输出层参数
    W_hq = normal((num_hiddens, num_outputs))
    b_q = torch.zeros(num_outputs, device=device)
    # 附加梯度
    params = [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc,
              b_c, W_hq, b_q]
    for param in params:
        param.requires_grad_(True)
    return params

2.3定义模型

在初始化函数中, 长短期记忆网络的隐状态需要返回一个额外的记忆元, 单元的值为0,形状为(批量大小,隐藏单元数)。 因此,我们得到以下的状态初始化。

def init_lstm_state(batch_size, num_hiddens, device):
    return (torch.zeros((batch_size, num_hiddens), device=device),
            torch.zeros((batch_size, num_hiddens), device=device))

实际模型的定义与我们前面讨论的一样: 提供三个门和一个额外的记忆元。 请注意,只有隐状态才会传递到输出层, 而记忆元 C t C_t Ct不直接参与输出计算。

def lstm(inputs, state, params):
    [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c,
     W_hq, b_q] = params
    (H, C) = state
    outputs = []
    for X in inputs:
        I = torch.sigmoid((X @ W_xi) + (H @ W_hi) + b_i)
        F = torch.sigmoid((X @ W_xf) + (H @ W_hf) + b_f)
        O = torch.sigmoid((X @ W_xo) + (H @ W_ho) + b_o)
        C_tilda = torch.tanh((X @ W_xc) + (H @ W_hc) + b_c)
        C = F * C + I * C_tilda
        H = O * torch.tanh(C)
        Y = (H @ W_hq) + b_q
        outputs.append(Y)
    return torch.cat(outputs, dim=0), (H, C)

2.4 训练与预测

vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500, 1
model = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_lstm_params,
                            init_lstm_state, lstm)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)

image-20230909153543972

3.简洁实现

使用高级API,我们可以直接实例化LSTM模型。 高级API封装了前文介绍的所有配置细节。 这段代码的运行速度要快得多, 因为它使用的是编译好的运算符而不是Python来处理之前阐述的许多细节。

num_inputs = vocab_size
lstm_layer = nn.LSTM(num_inputs, num_hiddens)
model = d2l.RNNModel(lstm_layer, len(vocab))
model = model.to(device)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)

image-20230909153613692

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
动手深度学习LSTM练习答案 LSTM长短期记忆网络)是一种用于处理时序数据的循环神经网络(RNN)的变种。它具有记忆单元和门控机制,能够有效地捕捉长期依赖关系。 以下是动手深度学习LSTM练习的答案: 1. 导入所需的库和模块: import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense 2. 准备训练数据: X_train = ... y_train = ... 3. 构建LSTM模型: model = Sequential() model.add(LSTM(units=128, input_shape=(X_train.shape[1], X_train.shape[2]))) model.add(Dense(units=1)) 4. 编译模型: model.compile(loss='mean_squared_error', optimizer='adam') 5. 训练模型: model.fit(X_train, y_train, epochs=10, batch_size=32) 6. 使用模型进行预测: y_pred = model.predict(X_test) 7. 评估模型性能: loss = model.evaluate(X_test, y_test) 以上是一个简单的LSTM模型的训练和预测流程。具体练习的数据和模型结构可能有所不同,可以根据实际需要进行调整和修改。 需要注意的是,在训练LSTM模型时,数据的维度要符合模型的输入要求。一般来说,输入数据的形状应为 [样本数, 时间步长, 特征维度],对应于三维的张量。同时,根据具体问题,可以选择合适的激活函数、优化算法和损失函数。 通过动手实践,我们可以更好地理解和掌握深度学习LSTM模型的使用方法,并根据实际问题进行调整和优化。希望以上答案能够对您有所帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值