论文笔记:Residual Feature Distillation Network for Lightweight Image Super-Resolution

本文介绍了Residual Feature Distillation Network(RFDN),一种轻量级的图像超分辨率模型,它通过feature distillation connections(FDC)和shallow residual block(SRB)实现高效性能。RFDN在减少参数数量的同时,超越了现有技术,尤其适合资源有限的端侧设备。
摘要由CSDN通过智能技术生成

摘要

(1)受益于CNN强大的拟合能力,图像超分取得了极大的进展。尽管基于CNN的方法取得了极好的性能与视觉效果,但是这些模型难以部署到端侧设备(高计算量、高内存占用)。

(2)为解决上述问题,已有各种不同的快速而轻量型的CNN模型提出,IDN(Information Distillation Network, IDN)是其中的佼佼者,它采用通道分离的方式提取蒸馏特征。然而,我们并不是很清晰的知道这个操作是如何有益于高效SISR的。

(3)该文提出一种等价于通道分离操作的特征蒸馏连接操作(Feature Distillation Connection, FDC),它更轻量且更灵活。基于FDC,作者对IMDN(Information Multi Distillation Network, IMDN)进行了重思考并提出了一种称之为RFDN(Residual Feature Distillation Network, RFDN)的轻量型图像超分模型,RFDN采用多个FDC学习更具判别能力的特征。与此同时,作者还提出一种浅层残差模块SRB(Shallow Residual Block, SRB)作为RFDB的构件模块,SRB即可得益于残差学习,又足够轻量。

最后作者通过实验表明:所提方法在性能与模型复杂度方面取得了更多的均衡。更进一步,增强型的RFDN(Enhanced RFDN, E-RFDN)获得了AIM2020 Efficient Super Resolution竞赛的冠军。

知识蒸馏综述
知识蒸馏设计思想
IDN论文讲解
IMDN论文讲解
Residual Feature Aggregation Network for Image Super-Resolution 中 RFA框架和ESA模块
Self-Attention机制
Non-local机制

1.Introduction

本文的主要贡献:

(1)提出了一种轻量的 residual feature distillation network(RFDN),实现了快速、准确的图像超分辨率,在使用比竞争对手少得多的参数的同时,获得了最先进的SR性能。
(2)本文对 information distillation mechanism(IDM)进行了较为全面的分析,并对IMDN网络进行了反思。基于这些新的理解,作者提出了比IDM更轻量和更灵活的 feature distillation connections(FDC)。
(3)作者提出了 shallow residual block(SRB),它将恒等连接与一个卷积块相结合,在不引入任何额外参数的情况下进一步提高了SR性能。
  • RFDN的结构图1所示:
    在这里插入图片描述
图1

2.RELATED WORK

最近,基于深度学习的模型在图像SR方面取得了巨大的改进。Dong等人做了这项开创性的工作,他们- - 首先开发了一个三层卷积神经网络SRCNN,以端到端的方式联合优化特征提取、非线性映射和图像重建。

  • 随后,Kim等人提出了超深分辨率(VDSR)网络,通过叠加20层卷积来提高超分辨率网络的性能。
  • 为了降低模型的复杂度,Kim等人引入了DRCN,它递归地应用了16次特征提取层。
  • DRRN将递归和残差网络方案相结合,对DRCN进行了改进,整个网络方案在参数较少的情况下获得了更好的性能。
  • Lai等人提出了laplacian金字塔超分辨率网络(LapSRN),以解决以原始LR图像为输入,逐步重建HR图像的子带残差的速度和精度问题。
  • Tai等人提出了用于图像恢复任务的持久存储网络(MemNet),解决了以往CNN体系结构中的长期依赖问题。
  • 为了降低计算量,提高测试速度,Shi等人设计了一种高效的亚像素卷积算法(sub-pixels),提高了SR-mdoels末端特征图的分辨率,使得大部分计算都在低维特征空间中进行。
  • 出于同样的目的,Dong等人提出了Fast SRCNNFSRCNN),它采用转置卷积作为上采样层来完成后上采样SR。
  • 然后Lim等人提出了EDSRMDSR,通过移除传统剩余网络中不必要的模块,实现了显著的改进。
  • 基于EDSR,Zhang等人通过在残差块中引入密集连接,提出了residual dense networkRDN)。他们还提出了非常深的 residual attention networkRCAN)和 residual non-local attention networkRNAN)。
  • Dai等人通过考虑feature statistics higher than first-order统计利用second-order attention mechanism ,自适应地重新缩放特征。
  • Guo等人通过引入额外的约束,开发了一种对偶回归方案,使得映射可以形成一个闭环,并且可以重构LR图像以增强SR模型的性能。

尽管基于CNN的方法取得了巨大的成功,但大多数方法都不适用于移动设备。为了解决这个问题,

  • Ahn等人通过级联网络架构提出了移动场景的CARN-M模型。
  • Hui等人提出了 information distillation networkIDN),将先前提取的特征明确地分为两部分。
  • 在IDN的基础上,本文还提出了快速、轻量级的 information multi-distillation networkIMDN),这是AIM-2019约束图像超分辨率挑战的优胜者解决方案。

3.METHOD

3.1 Information multi-distillation block

  • 如图2所示,图a给出了IMDN的核心模块IMDB的网路架构图,它是一种渐进式模块(Progressive Refinement Module),PRM部分(图中灰色背景区域)采用卷积从输入特征通过多个蒸馏步骤提取特征。在每个步骤,采用通道分离操作将特征分成两部分:一部分保留,一个融入到下一阶段的蒸馏步骤。假设输入特征表示为,该过程可以描述为:
    在这里插入图片描述

  • 其中 L j L_j L

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值