注意力机制通过让模型关注图像关键区域提升了识别精度,而轻量级残差网络通过减少参数和计算量,实现了在低资源消耗下的优秀性能。
结合注意力机制与轻量级残差网络,既能让模型能够更高效地关注输入数据中的关键信息,提升模型处理复杂模式的能力,还通过减少参数和计算复杂度,保持了模型的轻量级特性,达到在有限资源下同时保持高效率和高性能的目标。
目前,这种结合方法在多个任务中都表现出了显著的优势,这给我们提供了新的思路。为达到更好的性能和效率平衡,研究者们正在不断探索新的创新方案,我这次整理了9个最新的,已开源的代码附上了。
论文原文以及开源代码需要的同学看文末
An efcient lightweight network for image denoising using progressive residual and convolutional attention feature fusion
方法:作者提出了一种新颖的网络架构,这种架构融合了轻量级残差和注意力机制,目的是解决现有图像去噪方法中由于网络深度过大而导致的计算负担问题。
创新点:
-
通过将DB与RL结合,利用密集连接提取特征并利用残差连接保