FLatten Transformer: Vision Transformer using Focused Linear Attention

引言

本文主要是对《FLatten Transformer: Vision Transformer using Focused Linear Attention》这篇论文的一个解读与总结,原文链接:[2308.00442] FLatten Transformer: Vision Transformer using Focused Linear Attention (arxiv.org)

本篇论文主要是对注意力机制的时间复杂度的一个优化,采用映射函数同时变换计算次序,将普通注意力机制的二次时间复杂度优化为线性时间复杂度。但是因为采用线性注意力模块会导致特征聚焦,减少特征多样性,限制了注意力模块的表达能力,导致信息丢失,减少区分度,进而导致线性注意力模块的性能下降,所以再采用深度卷积模块来解决这一局限,保证特征的多样性。

预备知识

① 首先我们需要了解softmax注意力机制的计算过程,可以参考这篇博客注意力机制-CSDN博客

② 其次我们需要了解softmax注意力机制的时间复杂度:

③ 最后我们需要了解现已有线性注意力机制是怎么实现的:

        不使用softmax函数计算权重分布,采用映射函数代替softmax函数,然后再改变计算次序,降低时间复杂度,即可得到线性时间复杂度的注意力机制。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二三两。

你的鼓励是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值