jieba库中基于 TextRank 算法的关键词抽取——源代码分析(四)

本文分析jieba库中TextRank算法的关键词抽取,重点讲解以固定窗口大小确定词共现关系,构建图的过程。文章详细解读了遍历分词结果,实现词之间的连接,为计算词rank做准备。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2021SC@SDUSC
2021SC@SDUSC
Text Rank第二步——以固定窗口大小,词之间的共现关系,构建图
在源代码分析(一)、(二)、(三)中主要针对TextRank算法中第一步——分词,进行分析。从本篇文章中开始继续分析textrank.py进行分析。

def textrank(self, sentence, topK=20, withWeight=False, allowPOS=('ns', 'n', 'vn', 'v'), withFlag=False):
        
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值