最优化理论——拟牛顿算法·对称秩 1 算法

本文详细介绍了拟牛顿法和对称秩1算法的基本思想,通过Matlab代码展示了如何使用这两种方法解决无约束优化问题,包括算法步骤和一个具体问题的求解过程。对于优化理论初学者和开发者来说,这是一个实用的教程和代码示例。
摘要由CSDN通过智能技术生成

最优化理论——拟牛顿算法·对称秩 1 算法

算法思想

拟牛顿法

在这里插入图片描述

对称秩1法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

算法步骤

在这里插入图片描述
在这里插入图片描述

代码

Matlab代码如下:

function [x,val,k]=sr1(fun,gfun, x0)
%功能: 用对称秩1算法求解无约束问题:  min f(x)
%输入: x0是初始点, fun, gfun分别是目标函数及其梯度
%输出:  x, val分别是近似最优点和最优值,  k是迭代次数.
maxk=500;   %给出最大迭代次数
rho=0.55;sigma=0.4; epsilon=1e-5; 
k=0;   n=length(x0); Hk=eye(n); 
while(k<maxk)
    gk=feval(gfun,x0); %计算梯度
    dk=-Hk*gk; %计算搜索方向
    if(norm(gk)<epsilon), break; end  %检验终止准则
    m=0; mk=0;
    while(m<20)   % 用Armijo搜索求步长 
        if(feval(fun,x0+rho^m*dk)<feval(fun,x0)+sigma*rho^m*gk'*dk)
            mk=m; break;
        end
        m=m+1;
    end
    x=x0+rho^mk*dk;  
    sk=x-x0;  yk=feval(gfun,x)-gk;
    Hk=Hk+(sk-Hk*yk)*(sk-Hk*yk)'/((sk-Hk*yk)'*yk); %1校正
    k=k+1;     x0=x;
end
val=feval(fun,x0); 

示例

考虑无约束优化问题
m i n f ( x ) = 100 ( x 1 2 − x 2 ) 2 + ( x 1 − 1 ) 2 minf(x)=100(x_1^2-x_2)^2+(x_1-1)^2 minf(x)=100(x12x2)2+(x11)2
该问题有精确解x=(1,1)T, f ( x ) = 0 f(x)=0 f(x)=0.

fun函数文件:

%目标函数
function f=fun(x)
f=100*(x(1)^2-x(2))^2+(x(1)-1)^2;

gfun函数文件:

%梯度
function gf=gfun(x)
gf=[400*x(1)*(x(1)^2-x(2))+2*(x(1)-1), -200*(x(1)^2-x(2))];

交互界面输入:

x0=[-1,1];
[x,val,k]=sr1(’fun’,’gfun’,x0)

结果:
在这里插入图片描述

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值