Statistics:Python OLS简单一元线性回归之Scipy包(一)

Statistics

Python OLS简单一元线性回归之Scipy包(一)

写在前面 使用 python 做线性回归分析有好几种方式,常要的分别是 scipy 包,statsmodels 包,以及 sklearn 包。在这里会依次更新这几种方式的简单一元线性回归。并附上之间的区别与评价。

Excel数据结构
在这里插入图片描述
这里我们通过Excel中第四列和第五列的数据通过OLS计算顺丰CAPM的β系数。

代码

import scipy.stats as st
import pandas as pd
import matplotlib.pyplot as plt

datas = pd.read_excel('D:\\vscode\\第八章\\顺丰β系数.xlsx',sheet_name='Sheet1',header=2,index_col=0,usecols=4,skip_footer=5) 
datas.head()
datas=datas.dropna()
y = datas.iloc[:, 2] # 因变量为第 4 列数据(注意index_col=0的操作)
x = datas.iloc[:, 3] # 自变量为第 5 列数据

# 线性拟合,可以返回斜率,截距,r 值,p 值,标准误差
slope, intercept, r_value, p_value, std_err = st.linregress(x, y)

print(slope)# 输出斜率
print(intercept) # 输出截距
print(r_value**2) # 输出 r^2

效果图
在这里插入图片描述

评价
scipy 中scipy.stats linregress 函数的回归分析比较简单,目前只能做一元线性回归,也不能用来做预测。

  • 4
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值