这里只是对滑动窗口在时间序列预测中使用做一个分析总结,关于滑动窗口的详细介绍可以参考其他博文。
滑动窗口是一种常用的技术,它通过使用固定大小的窗口来创建训练样本,以便捕捉时间序列中的模式。适用于多种时间序列模型,包括 LSTM、GRU 和其他类型的递归神经网络(RNN),因为这些模型能够处理输入的时间依赖性。
注意:在使用滑动窗口生成训练样本之前,通常需要对数据进行标准化或归一化,以提高模型的收敛速度和预测准确性。如果使用了归一化,那么输出预测结果时也要反归一化。
一、概念
这里会涉及到两个概念:
1、窗口大小(Window Size)
定义:窗口大小是指在每个样本中包含的时间步数。
窗口大小决定了模型在每次预测时可以参考的历史数据的长度(这里是针对特征来说,也可以用于标签)。
较大的窗口大小可以捕捉更长时间范围内的趋势和模式,但可能会引入更多噪声,导致模型更难学习有效特征。
较小的窗口大小则可能会忽略重要的长期依赖关系,但有助于提高模型对短期波动的响应能力。
2、步长(Step Size)
定义:步长是窗口在时