并行加法器(串行进位或者并行进位)

本文探讨了利用门电路实现加法的基本原理,包括1bit和nbit全加器,以及串行进位的局限性。重点介绍了并行进位加法器的引入,带标志位的加法器设计,以及如何通过优化提高运算速度。最后提及了在实际设计中遇到的复杂性和优化策略,如C4级全加器结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

加法器

总述

image-20240408202952138

利用门电路实现一位的加法

image-20240408204240697

二进制的加法,就是很多个加法组成起来的。

1 bit全加器

image-20240408204335710

n bit加法器

image-20240408204525606

不足之处,进位信息是串行的,计算速度取决于进位产生和传递的速度。位数越多,运算速度越慢。

注1:电信号到达稳定态需要一定时间,因此进位产生速度会有延迟。

注2:串行进位又称为行波进位,每一级进位直接依赖于前一级的进位,即进位信号是逐级形成的。

image-20240408205009769

输入是并行的,但是进位方式是串行的。

并行进位的并行加法器

增加一个CLA部件。

image-20240408205236727

带标志位的加法器

加法器的范围是有限的,输入数据后,如果超出了范围,那么结果一定是错误的。是否为0的判定,A-B或者A+(-B)。判断A>B?通过判断A+(-B)是否大于0。

关心的问题:①是否溢出?②为0?③正还是负?

image-20240408205833449

标志位为OF、SF、ZF、CF。

带符号数和无符号数表示的范围是不一样的,所以判断溢出的方式也会不一样,所以用两种标志为来表示。带符号数的标志位为OF,无符号数的标志位为CF。

标志位的生成

image-20240408210311096

image-20240408210357379

image-20240408210448107

OF和CF的具体原理,后面补充。

总结

image-20240408210547819

串行进位的并行加法器

image-20240408210732681

如何更快的产生进位

image-20240408211003329

并行加法器的优化

image-20240408211253214
4个全加器,运算逻辑根据这些表达式来设计。由于套娃,线路越来越复杂,所以一般到C4。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值