最小二乘法公式

最小二乘法我不需要理解他的本质,只需要会使用这个公式即可:

最小二乘法是求解拟合直线的。注意!!是直线

设直线的方程为 y=bx+a

则以上公式就是用一堆二维平面上的点,来求拟合的直线

其中  为求和符号    

的意思是   求xi的平方的和   为期望,即平均值

写代码的时候直接代入得到a,b即为所需要的曲线

最小二乘法公式在Python中可以通过以下代码实现: ```python import numpy as np def least_square_method(X, y): X = np.hstack((np.ones((X.shape\[0\], 1)), X)) # 添加常数项 theta = np.linalg.inv(X.T @ X) @ X.T @ y # 最小二乘法公式 return theta ``` 其中,X是输入特征矩阵,y是目标变量向量。在代码中,我们首先为X添加了常数项,然后使用最小二乘法公式求解参数theta,最后返回theta作为拟合函数的系数。这个函数可以用于线性回归等问题的求解。 #### 引用[.reference_title] - *1* [几种最小二乘法及python代码:ELS、TLS、RLS](https://blog.csdn.net/zephyr_wang/article/details/128792156)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [最小二乘法及其python实现详解](https://blog.csdn.net/weixin_39567046/article/details/110700549)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [Python实现最小二乘法](https://blog.csdn.net/u010159842/article/details/52679911)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值