GEE | Dynamic World全球10米土地利用数据

图片

Brown, C.F., Brumby, S.P., Guzder-Williams, B. et al. Dynamic World, Near real-time global 10 m land use land cover mapping. Sci Data 9, 251 (2022). https://doi.org/10.1038/s41597-022-01307-4

1. 数据说明

Dynamic World V1 是一个10米分辨率的近实时土地利用/土地覆盖(LULC)数据集,基于Sentinel-2 L1C数据生成,覆盖时间范围为2015年6月27日至今。数据通过对云、云影的去除以及像素概率的计算,提供了9种土地利用类型的预测,包括水体(0)、树木(1)、草地(2)、淹水植被(3)、农田(4)、灌丛(5)、建设用地(6)、裸地(7)、雪冰(8)。

2. GEE代码

此代码适用于合成并导出年度的土地利用数据,各位同学可以根据自己的更换研究区和时间段。

图片

图片

 

### 获取10分辨率土地利用类型数据 对于10分辨率的土地利用类型数据,可以访问特定地区的下载链接来获取所需资源[^1]。例如: - **贵州省** 10m分辨率土地利用数据 - **福建省** 10m分辨率土地利用数据 - **北京市** 10m分辨率土地利用数据 - **安徽省** 10m分辨率土地利用数据 这些地区的数据已经经过处理并提供给用户使用。 为了有效管理和应用这类高分辨率空间数据,在实际操作过程中可能需要考虑计算机性能以及存储容量等因素。考虑到整个过程涉及大量计算和处理工作,建议采用高性能硬件设备以提高效率。 如果计划对多个省份或更大范围内的数据进行分析,则需注意不同区域间可能存在坐标系差异等问题,因此在预处理阶段应统一投影转换至相同标准下再开展后续研究工作。 ```python import rasterio as rio from osgeo import gdal, ogr, osr def reproject_raster(input_file, output_file, dst_crs='EPSG:4326'): with rio.open(input_file) as src: transform, width, height = calculate_default_transform( src.crs, dst_crs, src.width, src.height, *src.bounds) kwargs = src.meta.copy() kwargs.update({ 'crs': dst_crs, 'transform': transform, 'width': width, 'height': height }) with rio.open(output_file, 'w', **kwargs) as dst: for i in range(1, src.count + 1): reproject( source=rio.band(src, i), destination=rio.band(dst, i), src_transform=src.transform, src_crs=src.crs, dst_transform=transform, dst_crs=dst_crs, resampling=Resampling.nearest) reproject_raster('input.tif', 'output_reprojected.tif') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GIS遥感数据处理应用

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值