[深入浅出pytorch]第五章

pytorch模型相关知识点

之前的笔记略

模型的定义

基于nn.Module,可以通过SequentialModuleListModuleDict三种方式定义PyTorch模型

Sequential
class MySequential(nn.Module):
    from collections import OrderedDict
    def __init__(self, *args):
        super(MySequential, self).__init__()
        if len(args) == 1 and isinstance(args[0], OrderedDict): # 如果传入的是一个OrderedDict
            for key, module in args[0].items():
                self.add_module(key, module)  # add_module方法会将module添加进self._modules(一个OrderedDict)
        else:  # 传入的是一些Module
            for idx, module in enumerate(args):
                self.add_module(str(idx), module)
    def forward(self, input):
        # self._modules返回一个 OrderedDict,保证会按照成员添加时的顺序遍历成
        for module in self._modules.values():
            input = module(input)
        return input

Sequential类:接收一系列子模块或者一个子模块的有序字典(OrderedDict)作为参数来逐一添加Module的实例,模型的前向计算就是将这些实例按添加的顺序逐⼀计算

  1. 优点:可以通过简单的方式定义模型,不需要再写forward,因为顺序已经定义好了
  2. 缺点:会使得模型定义丧失灵活性,比如需要在模型中间加入一个外部输入时就不适合了
# 方式1
net = nn.Sequential(
        nn.Linear(784, 256),
        nn.ReLU(),
        nn.Linear(256, 10), 
        )
print('net:', net)

# 方式2,好处是可以给里面的层进行命名
net2 = nn.Sequential(collections.OrderedDict([
          ('fc1', nn.Linear(784, 256)),
          ('relu1', nn.ReLU()),
          ('fc2', nn.Linear(256, 10))
          ]))
print('net2:', net2)
ModuleList

ModuleList 接收一个属于nn.Module类的子模块(或层)的列表作为输入,然后也可以类似List那样进行appendextend操作。同时,子模块或层的权重也会自动添加到网络中来

class net1(nn.Module):
    def __init__(self):
        super(net1, self).__init__()
        self.linears = nn.ModuleList([nn.Linear(784, 256), nn.ReLU()])
    
    def append(self, module):
        self.linears = self.linears.append(module)
        return self.linears

    def forward(self, x):
        for m in self.linears:
            x = m(x)
        return x
net = net1()
print(net)
net.append(nn.Linear(256, 10)) # 类似List的append操作
# net1类本身没有append方法,自己写了一个以便能给ModuleList完成append操作
# print(net[-1])  # 模型没有类似List的索引访问
for name in net.state_dict():
    print(name) # 获得每层的参数名
    # print(net.state_dict()[name]) # 填该层参数名, 打印网络中指定的一层的参数
# for name, parameters in net.named_parameters(): # 打印整个网络每一层的名称和参数值
#    print(name, ':', parameters)
print(net)

nn.ModuleList只是将不同的模块储存在一起,并没有定义一个网络ModuleList中元素的先后顺序并不代表其在网络中的真实位置顺序,需要定义forward函数,指定各个层的先后顺序。

class model(nn.Module):
  # ......
  def forward(self, x):
    for layer in self.modulelist:
      x = layer(x)
    return x

类似这样用for循环写一个forward就好了

ModuleDict

ModuleList类似,但是接受一个模型字典作为输入,模型字典的键为该子模块(层)的名称,值为子模块(层)本身
但是python3.6之前的字典是无序的?前向的传播顺序能保证和模块字典中的一样吗?

总结
  1. Sequential适用于明确了要用哪些层,快速搭建模型的情况,不需要写__init__forward
  2. ModuleList和ModuleDict在适合某个完全相同的层需要重复出现多次,以及前层的结果需要和之前层中的结果进行融合(需要之前层的信息,如ResNets中的残差计算)时;

利用模型块快速搭建复杂网络

当模型的深度非常大时候,使用Sequential定义模型结构需要向其中添加几百行代码,使用起来不甚方便
对于大部分模型结构(比如ResNet、DenseNet等),我们仔细观察就会发现,虽然模型有很多层, 但是其中有很多重复出现的结构。考虑到每一层有其输入和输出,若干层串联成的”模块“也有其输入和输出,如果我们能将这些重复出现的层定义为一个"模块",每次只需要向网络中添加对应的模块来构建模型,这样将会极大便利模型构建的过程。
搞清楚了U-Net的架构,卷积和池化、上采样分别是什么意思,初步学习了U-Net的搭建方法

组成U-Net的模型块主要有如下几个部分:

  1. 每个子块内部的两次卷积(Double Convolution)
  2. 左侧模型块之间的下采样连接,即最大池化(Max pooling)
  3. 右侧模型块之间的上采样连接(Up sampling)
  4. 输出层的处理
  5. 除模型块外,还有模型块之间的横向连接,输入和U-Net底部的连接等计算
# e.g. U-Net
# 两次卷积
class DoubleConv(nn.Module):
    """(convolution => [BN] => ReLU) * 2"""

    def __init__(self, in_channels, out_channels, mid_channels=None):
        super().__init__()
        if not mid_channels:
            mid_channels = out_channels
        self.double_conv = nn.Sequential(
            nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(mid_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(inplace=True)
        )

    def forward(self, x):
        return self.double_conv(x)
# 池化连接
class Down(nn.Module):
    """Downscaling with maxpool then double conv"""

    def __init__(self, in_channels, out_channels):
        super().__init__()
        self.maxpool_conv = nn.Sequential(
            nn.MaxPool2d(2),
            DoubleConv(in_channels, out_channels)
        )

    def forward(self, x):
        return self.maxpool_conv(x)
# 使用双线性差值的上采样
class Up(nn.Module):
    """Upscaling then double conv"""

    def __init__(self, in_channels, out_channels, bilinear=True):
        super().__init__()

        # if bilinear, use the normal convolutions to reduce the number of channels
        if bilinear:
            self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
            self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)
        else:
            self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2)
            self.conv = DoubleConv(in_channels, out_channels)

    def forward(self, x1, x2):
        x1 = self.up(x1)
        # input is CHW
        diffY = x2.size()[2] - x1.size()[2]
        diffX = x2.size()[3] - x1.size()[3]

        x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,
                        diffY // 2, diffY - diffY // 2])
        # if you have padding issues, see
        # https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a
        # https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd
        x = torch.cat([x2, x1], dim=1)
        return self.conv(x)
class OutConv(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(OutConv, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)

    def forward(self, x):
        return self.conv(x)
class UNet(nn.Module):
    def __init__(self, n_channels, n_classes, bilinear=True):
        super(UNet, self).__init__()
        self.n_channels = n_channels
        self.n_classes = n_classes
        self.bilinear = bilinear

        self.inc = DoubleConv(n_channels, 64)
        self.down1 = Down(64, 128)
        self.down2 = Down(128, 256)
        self.down3 = Down(256, 512)
        factor = 2 if bilinear else 1
        self.down4 = Down(512, 1024 // factor)
        self.up1 = Up(1024, 512 // factor, bilinear)
        self.up2 = Up(512, 256 // factor, bilinear)
        self.up3 = Up(256, 128 // factor, bilinear)
        self.up4 = Up(128, 64, bilinear)
        self.outc = OutConv(64, n_classes)

    def forward(self, x):
        x1 = self.inc(x)
        x2 = self.down1(x1)
        x3 = self.down2(x2)
        x4 = self.down3(x3)
        x5 = self.down4(x4)
        x = self.up1(x5, x4)
        x = self.up2(x, x3)
        x = self.up3(x, x2)
        x = self.up4(x, x1)
        logits = self.outc(x)
        return logits

修改模型

假设我们想用原本用于ImageNet的resnet模型去做一个10分类的问题;同时我们又觉得一层全连接层可能太少了,想再加一层。这个时候应该怎么操作呢?

  1. 修改模型的fc层,将其输出节点数替换为10
  2. 将模型(net)最后名称为"fc"的层进行替换
# 首先查看resnet50的结构
net = models.resnet50()
print(net)

# 进行修改
classifier = nn.Sequential(OrderedDict([('fc1', nn.Linear(2048, 128)),
                          ('relu1', nn.ReLU()), 
                          ('dropout1',nn.Dropout(0.5)),
                          ('fc2', nn.Linear(128, 10)),
                          ('output', nn.Softmax(dim=1))
                          ]))
    
net.fc = classifier

如果我们希望利用已有的模型结构,在倒数第二层增加一个额外的输入变量add_variable来辅助预测(监督),这时候应该怎么做呢?
这一块和上一块没有细究,以后用到了再说,主要是下一块:输出模型某一中间层的结果,以施加额外的监督,获得更好的中间层结果,以便我们进行攻击

以resnet50做10分类任务为例,在已经定义好的模型结构上,同时输出1000维的倒数第二层和10维的最后一层结果

class Model(nn.Module):
    def __init__(self, net):
        super(Model, self).__init__()
        self.net = net
        self.relu = nn.ReLU()
        self.dropout = nn.Dropout(0.5)
        self.fc1 = nn.Linear(1000, 10, bias=True)
        self.output = nn.Softmax(dim=1)
        
    def forward(self, x):
        x1000 = self.net(x)
        x10 = self.dropout(self.relu(x1000))
        x10 = self.fc1(x10)
        x10 = self.output(x10)
        return x10, x1000
class Model(nn.Module):
    def __init__(self, net):
        super(Model, self).__init__()
        self.net = net
        self.relu = nn.ReLU()
        self.dropout = nn.Dropout(0.5)
        self.fc1 = nn.Linear(1000, 10, bias=True)
        self.output = nn.Softmax(dim=1)
        
    def forward(self, x):
        x1000 = self.net(x)
        x10 = self.dropout(self.relu(x1000))
        x10 = self.fc1(x10)
        x10 = self.output(x10)
        return x10, x1000
原生模型获取中间结果
temp = None
for name, value in net._modules.items():
    # 一种获取模型名字的方法
    print('name:', name)
    print('value:', value)
    # x = value(x)
    # if name=='0':
        # temp = value[0](x)
import random
net = models.resnet18()

for param in net.named_parameters():
    # nn.Module里面关于参数有两个很重要的属性named_parameters()和parameters()
    # 前者给出网络层的名字[0]和参数数值[1]的迭代器,而后者仅仅是参数的迭代器
    print(param[0])

x = torch.randn(1,3,224,224)
# 使用pytorch中nn.module里的register_forward_hook()来获取网络forward时的feature

def hook(module, inputdata, output):
    print(output.data)

handle = net.conv1.register_forward_hook(hook)
handle0 = net.maxpool.register_forward_hook(hook)
handle1 = net.layer1[0].conv1.register_forward_hook(hook)
handle2 = net.layer1[0].conv2.register_forward_hook(hook)
handle3 = net.layer1[1].conv1.register_forward_hook(hook)
handle4 = net.layer1[1].conv2.register_forward_hook(hook)
y = net(x)

handle.remove()
handle0.remove()
handle1.remove()
handle2.remove()
handle3.remove()
handle4.remove()
# 获取网络不同层的feature并传到hook函数中打印feature的形状,记得把钩子删掉

模型的训练与保存

一个PyTorch模型主要包含两个部分:模型结构和权重。其中模型是继承nn.Module的类,权重的数据结构是一个字典(key是层名,value是权重向量)。存储也由此分为两种形式:存储整个模型(包括结构和权重),和只存储模型权重。
而PyTorch存储模型主要采用pkl,pt,pth三种格式,这三种格式均支持只保留权重,或模型结构和权重一起保存。
由于目前都是单卡训练,因此只需要简单的下面的代码就可以了

# 保存模型
model = models.resnet152(pretrained=True)

# 保存整个模型
torch.save(model, save_dir)
# 只保存模型权重
torch.save(model.state_dict, save_dir)

os.environ['CUDA_VISIBLE_DEVICES'] = '0'   # 这里替换成希望使用的GPU编号
model = models.resnet152(pretrained=True)
model.cuda()

# 读取整个模型
loaded_model = torch.load(save_dir)
loaded_model.cuda()

# 读取模型权重
loaded_dict = torch.load(save_dir)
loaded_model = models.resnet152()   # 注意这里需要对模型结构有定义
loaded_model.state_dict = loaded_dict
loaded_model.cuda()

参考资料

  1. https://blog.csdn.net/qq_45589658/article/details/112335626
  2. https://zhuanlan.zhihu.com/p/53927068
  3. https://github.com/datawhalechina/thorough-pytorch/tree/main/%E7%AC%AC%E4%BA%94%E7%AB%A0%20PyTorch%E6%A8%A1%E5%9E%8B%E5%AE%9A%E4%B9%89
  4. https://zhuanlan.zhihu.com/p/64990232
  5. https://www.zhihu.com/question/49376084/answer/338145504
  6. https://blog.csdn.net/hxxjxw/article/details/107734140
  7. https://www.freesion.com/article/97611099115/
  8. https://blog.csdn.net/weixin_41866216/article/details/107933311?utm_source=app&app_version=5.1.1&code=app_1562916241&uLinkId=usr1mkqgl919blen
  9. https://blog.csdn.net/qq_42278791/article/details/90690747
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值