NLP系列(7)关系识别(Bert)pytorch

本文介绍了如何使用Bert模型进行中文文本的实体识别,包括数据预处理、模型结构(如BERT模型、entity_average和hidden2tag层)以及如何进行实体关系预测。代码示例展示了如何为Bert模型提供输入和处理输出。
摘要由CSDN通过智能技术生成

模型介绍

本项目是使用Bert模型来进行文本的实体识别。

Bert模型介绍可以查看这篇文章:

NLP系列(2)文本分类(Bert)pytorch_bert文本分类-CSDN博客

模型结构

Bert模型的模型结构:

数据介绍

数据网址:​​​​​​https://github.com/buppt//raw/master/data/people-relation/train.txt

实体1  实体2  关系 文本

        input_ids_list, token_type_ids_list, attention_mask_list, e1_masks_list, e2_masks_list, labels_list = [], [], [], [], [], []

        for instance in batch_data:
            # 按照batch中的最大数据长度,对数据进行padding填充
            input_ids_temp = instance["input_ids"]
            token_type_ids_temp = instance["token_type_ids"]
            attention_mask_temp = instance["attention_mask"]
            e1_masks_temp = instance["e1_masks"]
            e2_masks_temp = instance["e2_masks"]
            labels_temp = instance["labels"]

            # 添加到对应的list中
            input_ids_list.append(torch.tensor(input_ids_temp, dtype=torch.long))
            token_type_ids_list.append(torch.tensor(token_type_ids_temp, dtype=torch.long))
            attention_mask_list.append(torch.tensor(attention_mask_temp, dtype=torch.long))
            e1_masks_list.append(torch.tensor(e1_masks_temp, dtype=torch.long))
            e2_masks_list.append(torch.tensor(e2_masks_temp, dtype=torch.long))
            labels_list.append(labels_temp)

        # 使用pad_sequence函数,会将list中所有的tensor进行长度补全,补全到一个batch数据中的最大长度,补全元素为padding_value
        return {"input_ids": pad_sequence(input_ids_list, batch_first=True, padding_value=0),
                "token_type_ids": pad_sequence(token_type_ids_list, batch_first=True, padding_value=0),
                "attention_mask": pad_sequence(attention_mask_list, batch_first=True, padding_value=0),
                "e1_masks": pad_sequence(e1_masks_list, batch_first=True, padding_value=0),
                "e2_masks": pad_sequence(e2_masks_list, batch_first=True, padding_value=0),
                "labels": torch.tensor(labels_list, dtype=torch.long)}

模型准备

    def forward(self, token_ids, token_type_ids, attention_mask, e1_mask, e2_mask):
        sequence_output, pooled_output = self.bert_model(input_ids=token_ids, token_type_ids=token_type_ids,
                                                         attention_mask=attention_mask, return_dict=False)

        # 每个实体的所有token向量的平均值
        e1_h = self.entity_average(sequence_output, e1_mask)
        e2_h = self.entity_average(sequence_output, e2_mask)
        e1_h = self.activation(self.dense(e1_h))
        e2_h = self.activation(self.dense(e2_h))

        # [cls] + 实体1 + 实体2
        concat_h = torch.cat([pooled_output, e1_h, e2_h], dim=-1)
        concat_h = self.norm(concat_h)
        logits = self.hidden2tag(self.drop(concat_h))

        return logits

模型预测

输入中文句子:丁一岚与丈夫邓拓
句子中的实体1:丁一岚
句子中的实体2:邓拓
在丁一岚与丈夫邓拓中丁一岚与邓拓的关系为:夫妻


输入中文句子:丁一岚与丈夫邓拓
句子中的实体1:邓拓
句子中的实体2:丁一岚
在【丁一岚与丈夫邓拓】中【邓拓】与【丁一岚】的关系为:夫妻


输入中文句子:京德云社演出相声,演员包括郭德纲、于谦、李菁、高峰、何云伟、曹云金、刘云天、栾云平、岳云鹏等,段子包括《兵器谱》、《大西厢》、《梦中婚
句子中的实体1:郭德纲
句子中的实体2:刘云天
在【京德云社演出相声,演员包括郭德纲、于谦、李菁、高峰、何云伟、曹云金、刘云天、栾云平、岳云鹏等,段子包括《兵器谱》、《大西厢》、《梦中婚】中【郭德纲】与【刘云天】的关系为:师生


输入中文句子:在荣国府里,虽然官爵是由贾政承继,但真正主持家政的却是贾赦这一派,而且贾赦在贾母面前似乎并不得宠。
句子中的实体1:贾母
句子中的实体2:贾赦
在【在荣国府里,虽然官爵是由贾政承继,但真正主持家政的却是贾赦这一派,而且贾赦在贾母面前似乎并不得宠。】中【贾母】与【贾赦】的关系为:父母

源码获取

Bert 关系识别icon-default.png?t=N7T8https://github.com/mzc421/Pytorch-NLP/tree/master/12-Bert%20%E5%85%B3%E7%B3%BB%E8%AF%86%E5%88%AB

硬性的标准其实限制不了无限可能的我们,所以啊!少年们加油吧!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

牧锦程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值