前言
在现代教育环境中,学生上课行为的监测对于提升教学质量和学生学习效率具有重要意义。然而,传统的人工观察方法不仅效率低下,而且难以保证客观性和准确性。为了解决这一问题,我们启动了这个项目,目的是利用YOLOV8这一先进的深度学习技术,开发一个自动化的学生上课行为检测系统。
通过对上课行为数据集进行深入分析和标注,我们训练了YOLOV8模型,使其能够精确识别学生在课堂上的各种行为状态。这一系统能够实时监控并分析学生的行为,为教师提供即时反馈,帮助他们优化教学方法,提高课堂互动质量。
基于此项目,设计了一个使用Pyqt5库来搭建页面展示系统。本系统支持的功能包括训练模型的导入、初始化;置信度与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;摄像头的上传、检测、可视化结果展示与结束检测;已检测目标信息列表、位置信息;以及推理用时。本博文提供了完整的Python代码和使用教程,适合新入门的朋友参考,完整代码资源文件请转至文末的下载链接。
优势
-
高效率:自动化的监测系统大大减少了人工观察的时间和劳动成本,提高了监测效率。
-
高准确性:YOLOV8模型在目标检测领域的先进性确保了行为识别的高准确度。
-
实时反馈:系统能够提供实时的学生行为反馈,使教师能够及时调整教学策略。
-
多场景适用:无论是传统教室还是在线教学环境,该系统都能够灵活应用。
-
数据驱动:系统收集的数据可以用于进一步分析,为教育决策提供科学依据。
应用场景
-
课堂教学:教师可以利用该系统实时监控学生上课状态,及时调整教学方法,提高课堂参与度。
-
学生评估:系统可以作为一个评估工具,帮助教师客观评价学生的课堂表现和学习态度。
-
教育研究:研究人员可以利用系统收集的数据,进行教育心理学、教学方法等方面的研究。
-
个性化教学:根据学生的上课行为数据,教师可以为学生提供更加个性化的教学内容和辅导。
-
远程教学:在远程教学中,该系统可以帮助教师远程监控学生的上课状态,确保教学质量。
-
行为矫正:系统可以辅助教师识别需要特别关注的学生,制定相应的行为矫正计划。
一、软件核心功能介绍及效果演示
软件主要功能
-
支持
图片、图片批量、视频及摄像头进行检测,同时摄像头可支持内置摄像头和外设摄像头; -
可对
检测结果进行单独分析,并且显示单个检测物体的坐标、置信度等; -
界面可实时显示
目标位置、检测结果、检测时间、置信度、检测结果回滚等信息; -
支持
图片、视频及摄像头的结果保存,将检测结果保持为excel文件;
界面参数设置说明


-
标签4 摄像头源/相机/网络源; -
标签5 交并比阈值:目标检测时的iou参数,只有目标检测框的交并比大于该值,结果才会显示;

最低0.47元/天 解锁文章
2310

被折叠的 条评论
为什么被折叠?



