基于斑点的香蕉褐变情况视觉识别算法【毕业设计】

摘   要

香蕉是一种热带水果,它生长在世界各地,由于其口感鲜美、易于消化和营养丰富,已经成为了人们日常生活中不可或缺的一部分。然而,由于香蕉的特殊生长环境和后期处理流程的复杂性,导致其在产业链中出现了许多质量问题。特别是在香蕉销售的过程中,由于传统的品质检测方法效率低下,难以满足市场需求,因此必须采用先进的技术手段进行改进。通过运用计算机视觉技术,对香蕉进行图像处理,并提取香蕉表面斑点面积和香蕉整体面积的像素点个数,从而建立香蕉褐变斑点面积比模糊隶属函数输入模糊分类器,有效地解决品质检测的问题。

香蕉褐变斑点面积比是香蕉品质成熟度的一个重要指标,它可以反映香蕉的新鲜程度和品质水平。通过利用该指标,商家可以快速判断香蕉的品质成熟度,以便更好地满足客户的需求。同时,这项技术也可以减少人力成本和时间成本,提高品质检测效率和准确性。目前,香蕉产业正处于快速发展的阶段,各个环节都需要进行现代化改造。利用香蕉斑点视觉监控技术进行品质检测,是推动香蕉产业现代化的重要举措之一。该技术的应用将有助于减少损耗率,提高香蕉品质,增加商家的经济效益和竞争力。总之,利用计算机视觉技术对香蕉品质进行无损检测,是实现香蕉产业现代化的必要手段之一。该技术的应用不仅可以提高检测效率、降低成本,还可以保证香蕉品质的稳定性和可靠性。本研究希望能够进一步推广和应用这项技术,促进香蕉产业的发展和进步。

关键词:香蕉褐变斑点面积比;香蕉品质成熟度;阈值分割;模糊分类

Abstract

Banana is a tropical fruit that grows all over the world and has become an integral part of people's daily lives due to its delicious, digestible and nutritious taste. However, due to the special growing environment and complexity of the post-processing process of bananas, many quality problems have emerged in the industrial chain.Especially in the process of banana sales, due to the inefficiency of traditional quality inspection methods and difficult to meet market demand, advanced technical means must be used to improve. By using computer vision technology, the banana image is processed, and the number of pixels of the banana surface spot area and the overall banana area is extracted, so as to establish the banana browning spot area ratio fuzzy membership function input fuzzy classifier, which can effectively solve the problem of quality detection.

The browning spot area ratio of bananas is an important indicator of banana quality ripeness, which can reflect the freshness and quality level of bananas. By using this indicator, merchants can quickly determine the quality ripeness of bananas in order to better meet the needs of customers. At the same time, this technology can also reduce labor costs and time costs, and improve the efficiency and accuracy of quality inspection.At present, the banana industry is in a stage of rapid development, and all links need to be modernized. The use of banana spot visual monitoring technology for quality inspection is one of the important measures to promote the modernization of the banana industry. The application of this technology will help reduce the loss rate, improve the quality of bananas, and increase the economic efficiency and competitiveness of enterprises.In short, the use of computer vision technology to non-destructive testing of banana quality is one of the necessary means to realize the modernization of the banana industry. The application of this technology can not only improve detection efficiency, reduce costs, but also ensure the stability and reliability of banana quality. It is hoped that this technology can be further promoted and applied in the future to promote the development and progress of the banana industry.

Key words: Banana Browning spot area ratio; Banana quality maturity; Threshold segmentation;  Fuzzy classification

  • 绪论

  • 1 课题研究背景及意义  

香蕉是一种经济作物,全球产量位列水果之首。香蕉含有多种营养物质,如碳水化合物、维生素C、钾、镁等,对人体健康有益。据共研网统计,2021年国内香蕉表观消费量就达到了1356.7万吨,同比增长2.47%[1]。

香蕉是一种后熟型水果,采摘后的香蕉在不断成熟过程中会不断出现褐色斑点,该褐班是香蕉保存中的一个外在视觉特征。一般黄色的香蕉表皮逐渐出现豹纹般褐色斑点的过程称为香蕉褐变现象。出现这些斑点的开始,采摘后的香蕉才会有较香甜的味道。但继续存放太久,随着斑点的增多,香蕉就会变质腐烂。褐斑的不断增多即伴随着香蕉从生到熟到变质的存放过程。香蕉一旦变黄后对温度十分敏感,环境温度偏高,香蕉会加速释放乙烯催熟自身,导致保鲜期缩短;据不完全统计,在国内商家的售卖中,香蕉的损耗达到近10%,远高于其他水果的5%损耗。因此,如何地掌握香蕉的品质成熟度是帮助商家提高香蕉利润的关键因素。

目前国外对水果的自动检测技术已经达到了相对成熟的地步,而在国内对香蕉成熟度检测的方法仍是采用人工肉眼对表皮褐变的斑点面积进行判别。采用人工判别的方法不仅效率低,速度慢,联动性差,不利于信息的集成;还在精度方面受人的主观影响较大。近年来,随着计算机视觉技术的飞快发展,利用机器视觉与图像处理作为一种无损检测方法,已经能有效地解决以上问题。通过多年的研究和实践证明,以机器视觉和图像检测为原理的无损检测在果蔬的纹理、大小、形状、颜色等方面具有较高效率的检测识别[2]。

在本研究中,将利用计算机视觉技术解决香蕉检测和分类的问题,通过提取香蕉表面面积信息,采用模糊分类器实现香蕉品质成熟度的等级分类操作。

    • 2 国内外研究现状

近年来,影像数据的爆发式增长使得图像处理技术凭借其无损检测的优势吸引越来越多的研究者投入其中。图像分割是将图像分成为几个具有特殊意义的区域,是图像识别的重要环节,也是图像分析和理解的基础。图像分割的质量常常会影响随后的图像处理。目前常用的图像分割方法包括基于图像阈值的分割、基于边缘检测的分割、基于区域增长分割和基于特征空间聚类分割。如2014年胡孟晗等人提出了一种基于椭圆傅里叶描述子的香蕉形状识别的优化算法,利用水果形状的均一性和椭圆傅里叶描述子归一化后具有平移、大小和旋转不变性的特点能较好地重建香蕉形状[3];彭祺等人采用一种基于双椭圆变化参数的香蕉形状描述方法,通过预处理得到二值化图像,用库函数cv.fitEllipse进行二维点集的椭圆曲线拟合,设定初始轮廓,构造可变参数外接椭圆和内接椭圆,以双椭圆重合面积大小为准则进行香蕉形状的拟合描述[4];2016年吴佩等人在形状拟合的基础上提出了用RGB分量模糊评判的识别方法来提高香蕉识别的准确度[5];赵相飞基于纹理颜色对温室大棚内背景颜色相近的黄瓜进行识别[6]。Peng等利用边缘检测法和支持向量机对水果进行识别和分类,香蕉的识别准确的较高[7]。上述方法会因为外部环境的不确定性以及各种因素影响香蕉图像采集的质量和识别的准确度。因此,随着人工智能技术领域的迅速发展,各种深度学习算法已将图像技术推向新的高度。其中,卷积神经网络等深度学习方法依靠计算机的运算能力和网络的自我学习能力,在各个领域展现了非常显著的成果。例如,刘海军等人利用RGB图像进行阈值分割和特征提取,通过贝叶斯算法优化人工神经网络,建立香蕉表面特征与成熟度的检测模型[8]。杨长辉等利用卷积神经网络构建采摘机器人识别系统有效地进行了避障采摘作业[9]。Yu等通过掩膜区域卷积神经网路在非结构环境下进行草莓识别,准确率较高[10]。卷积神经网络可以获得较好的识别效果,但是它的结构复杂,训练参数众多,需要大量的图像样本来训练;此外,该模型需要多次迭代才能收敛,因此训练时间较长,并且需要高配置的系统硬件,这不利于在设备上进行部署。

回顾图像识别研究的历史,可以看到其发展有三个明显的趋势。第一,对原有算法的升级和改进,使用更精确的新算法来选择研究对象。第二,引入新的方法或概念,或者综合多种方法来处理难以获得满意效果的图像识别问题。第三,神经网络和深度学习在机器视觉方面的应用越来越广泛。通过构建多层网络表示数据的抽象语义信息,从而获得更高的特征鲁棒性。

虽然国内外研究人员对香蕉的图像识别进行了深入研究,但是对于不同的香蕉种类和个体其可变性较大,加上周围环境等各因素的影响,导致提出的算法都是针对具体问题具体分析。例如,付根平提出一种基于图像背景饱和度压缩与差异阈值分割融合的香蕉串识别方法[11]。所以目前图像处理中主要存在两个问题:1、没有一种普遍使用的算法;2、没有一个好的评判标准。因此有必要针对现有的实际情况,研究切实可行的图像识别算法,为智能图像处理提供理论和技术支持,也有必要对已有的算法进行总结与综合性能评价。

    • 3 研究内容

本次研究主要针对褐变过程中香蕉表面斑点面积占香蕉总面积之比进行监控检测研究。从基于机器视觉的图像特征参数分析、表皮褐变斑点面积的提取计算和香蕉品质成熟度的模糊分类器设计三个方面对香蕉表面斑点进行检测分析,通过样本选取与数据收集进行实证研究。全文分为四章,其结构安排如下:

第一章回顾机器视觉技术的研究现状和发展趋势,对几种水果无损检测以及形状识别的方法进行了阐述,同时确定了本文的主要研究方向和研究内容。

第二章介绍了图像的基础理论知识,阐述本次研究构建的采集环境,确定香蕉图像的采集方案。

第三章研究了香蕉褐变斑点面积比的计算方法。采集香蕉图像数据,为了比较香蕉不同特征值下的阈值分割效果,首先将香蕉图片用不同特征值进行灰度化处理,在针对灰度化处理后的图像选取合适的阈值进行分割得到二值图像。定义香蕉表面斑点面积的像素点个数与香蕉整体面积的像素点个数之比为香蕉褐变斑点面积比,遍历图像像素点得到香蕉斑点面积像素点个数和香蕉整体面积像素点个数,所以可求得每张图的香蕉褐变斑点面积比。

第四章设计香蕉品质成熟度的模糊分类器,根据提取的褐变斑点面积比数据对香蕉等级进行分类。

第五章总结了本文的主要研究成果,指出研究的不足所在并对未来深入研究的方向进行预测。

    • 1 技术路线

本文的主要研究路线图如图1.1所示:

  • 图像采集

    • 图像

图像是一种视觉信息的表现形式,是指由像素构成的数组,每个像素代表图像在对应位置上的信息。图像可以通过光电转换、数字采集等技术将物理世界中的视觉信息转换为数字形式,并且可以在计算机中进行存储、处理、传输和显示。在计算机视觉和图像处理领域,图像是信息的载体,是研究对象之一,也是许多应用的基础。

      • 分辨率

分辨率指的是图像能够显示的细节层数或清晰度,通常表示为图像中每英寸(ppi)像素数。在数字图像中,分辨率是指像素数,通常以横向像素数和纵向像素数表示。例如,一个分辨率为1920x1080的屏幕指的是该屏幕的横向像素数为1920,纵向像素数为1080。分辨率越高,图像就越清晰,能够显示更多的细节。

      • RGB色彩模式

RGB色彩模式是一种用于表示彩色图像的方式,它是由红、绿、蓝三原色的不同亮度和颜色组合来表示所有其他颜色的方法。在RGB色彩模式中,每个像素都有三个颜色通道:红色、绿色和蓝色。每个通道的亮度值可以从0到255的整数范围内取值,其中0表示最暗的颜色,255表示最亮的颜色。通过这三个通道的不同亮度值的组合,可以形成众多的颜色。RGB色彩模式是广泛应用于电子显示器和数字图像处理的一种颜色模式。RGB色彩模式如图2.1所示:

      • RGB彩色立方图

RGB彩色空间中,颜色可以被表示为一个三维向量,其中每个分量代表一个颜色的强度。这个三维向量可以看作是一个点在一个立方体内的位置(如下图2.2所示),该立方体的六个顶点对应着红、绿、蓝、青、品红和黄色。灰度等级则通过在立方体内部和外部的连线来表示。因此,RGB彩色空间为我们提供了一种直观的方式来描述和操作颜色。将彩色立方图归一化到[0,1]的范围内,则蓝色可以表示为(0,0,1),而灰色可以表示为向量(0.5,0.5,0.5)[12]。本次研究对象是香蕉,香蕉的颜色主要以黄色为主。由RGB模型可知,只需要抑制蓝色颜色分量就可得到黄色。

    • 图像采集

      • 样本选择

香蕉产业主要分布在我国西南部,2021年,广东香蕉产量达到483.3万吨,占全国香蕉产量的41.22%;广西香蕉产量为309.8万吨,占全国香蕉产量的26.42%;云南香蕉产量为202.4万吨,占全国香蕉产量的17.26%。目前我们主要种植的鲜食香蕉主要为香牙蕉、大蕉、粉蕉和贡蕉,其中香牙蕉面积最大,产量最高。本研究将香牙蕉作为实验香蕉,挑选出大小相似、弯曲度均一,外观没有显著机械损伤的香蕉,每天观察香蕉颜色变化进行图像采集[13]。

      • 实验器材组成部分

要进行基于机器视觉的香蕉褐变程度判别实验,首先需要建立一个完善的实验采集平台。实验平台硬件组成部分主要包括佳能6D相机、42cm*42cm*42cm铝铂保温箱、deep 18v摄影专业LED光源等部分。实验平台的硬件系统示意图如下2.3所示:

光源箱:本实验中光源箱的形状大小是42cm*42cm*42cm的正方体,箱内背景设计为铝箔纸,其目的一是利用铝箔纸增加光线的漫反射,使像本光照均匀;二是利用铝箔的保温隔热功能防止环境温度突变导致香蕉受到冻害。

面巾纸:光源箱底部铺有1cm厚度面巾纸,该面巾纸能有效防止香蕉因重力作用导致其接触地面部分受到机械损伤产生非正常褐变;由于铝箔表面过于光滑,在灯光的照射下容易产生明暗两部分影响采集背景,而面巾纸能有效防止上述情况的发生。香蕉表皮在褐变的过程中,白色底板比银色底板更容易与香蕉区别,减少后续图像处理加工,降低实验误差[14]。

相机:本实验采用佳能6d2全画幅EOS数码单反相机,有效像素2620万,分辨率为6240*4160。实验中采用的光圈值为f5.6,曝光时间为1/100sec,感光度ISO设置为200。

镜头:镜头的选择是佳能EF24-70mm f/.8L单反镜头标准变焦镜头。

光源:为了符合对香蕉图像采集的要求,实验选用了功耗低、性能稳定、寿命长的LED光源。在本实验中,我们使用了摄影用LED补光灯,其输出电压为12V,功率为20W,亮度可线性调节为20%至100%,发光颜色为白色和黄色。

      • 图像采集

在进行采集香蕉样本图像时,需要注意以下几点。首先,香蕉应该被放置在镜头的中心位置,这样可以使得采集到的图像更加清晰和准确。其次,为了保证采集到的样本具有可比性,所有香蕉的摆放位置需要一致,果柄的朝向也应该保持一致。

此外,为了让采集到的样本更加规范,我们还需要注意香蕉尾部至中上部的所在直线需与镜头框的纵向框线平行。这可以确保采集到的香蕉样本都具有相似的拍摄角度,方便后续的图像处理和识别。

最后,为了确保图像处理时对于不同角度进行识别,我们还需要将香蕉翻转采集不同位置的图片。这可以让我们采集到不同角度和不同姿态下的香蕉图像,从而使得我们的图像识别模型更加准确和全面。

  • 图像分割

    • 二值图、灰度图介绍

二值图像中每个像素只能有两种取值或者灰度等级。一般都使用黑白、B&W或单色图像来表示二值图像。二值图像虽然数据量小,但它能定义几何学的各种概念。对于计算机而言,二值图像的处理速度快,成本低,实用性强,受到研究人员的广泛喜爱。二值图像可以保存为双精度和uint8数据类型数组,显然uint8更加节省空间,所以一般返回的二值图像处理函数的保存方式为uint8数据类型。

灰度图是一种图像类型,它使用灰度级别来表示图像中每个像素的亮度。每个像素的亮度可以用一个8位的灰度值(通常范围为0-255)来表示,其中0表示黑色,255表示白色。通过这种灰度值的变化,图像中的不同亮度级别可以被捕捉和表示。由于灰度图像不包含彩色信息,相对于彩色图像,它们具有更低的存储需求和处理复杂度。在某些情况下,将彩色图像转换为灰度图像可以简化图像处理任务。将彩色图像转换为灰度图像,可以使用一些常见的方法,如平均法、加权平均法或将红、绿、蓝通道的值相加并求平均。这样可以将彩色图像的每个像素的RGB(红绿蓝)值转换为单个灰度值。[15]

    • 阈值分割

阈值分割是一种简单而常用的图像分割方法,用于将灰度图像中的像素分为不同的区域或类别。该方法基于设定一个或多个阈值,将图像中的像素根据其灰度值与阈值的关系进行分类。

阈值分割的基本原理是将图像中的像素根据其灰度值与阈值的比较结果分为两个或多个类别。常见的情况是将图像分为前景(目标)和背景两个类别,其中前景是感兴趣的目标区域,背景是除了前景之外的区域,从而将一副灰度图像转换为二值图像。二值图像只有黑白两种颜色,可以用数学表达式来表示:

设图像为f(x,y),T为阈值,则分割的函数操作为式1:

                                         

P(x,y)表示点(x,y)的局部性质。经过阈值化处理后图像g(x,y)定义为式2:

                        

其中1的像素对应于对象,0的像素对应于背景。

    • 不同阈值下的香蕉图像分割

      • 不同阈值的选取

阈值分割法的核心在于选择合适的阈值,通过该方法可以使用封闭且连通的边界来定义重叠区域,对于目标与背景对比度较强的图像,此方法能够获得较好的分割效果[16]。目前常用的阈值分割方法有全局阈值分割、双峰阈值分割、自适应阈值分割、Otus阈值分割以及迭代式阈值分割。

全局阈值分割是基于图像灰度直方图的阈值分割方法。如果目标图像的前景和背景的对比度很高,那么这幅图像的灰度级直方图将会呈现出明显的双峰状。根据图像的特性和需求,选择一个合适的阈值,将图像中的每个像素和阈值进行比较即可将像素分为前景和背景两部分;根据像素分类结果生成二值图像。

迭代阈值法:迭代阈值法相似于阈值分割法,本质都是利用阈值对图像进行分割,不同之处在于,迭代阈值法会选定一个初始阈值并将其不断迭代和更新,以选择近似的阈值,并最终比较选择出最合适的阈值[17]。具体步骤如下:

根据香蕉图像的整体灰度值,求出图像的最大灰度值和最小灰度值,将初始阈值定为,如式3所示:

                                                 

根据设定的阈,将图像划分为前景与背景两部分,大于的像素视为背景区域,小于的像素部分定为目标区域,分别计算出两区域的平均灰度值和,分别是式4和式5。

                                                

是背景区域的像素点数目;是目标区域的像素点数目根据得出的平均灰度值和重新计算出阈值,当(

为允许误差)则迭代停止,否则令,重复进行以上步骤,直到满足条件时确定的是最佳阈值。

Otus算法,又称之为最大类间方差法。基本原理是通过确定图像的阈值来确定物体和背景之间的分界线,从而将它们分为背景和前景。边缘检测则是通过比较物体与背景之间的相似性来找到最佳的阈值,从而实现对目标的提取[18]。设灰度图像的大小为,前景和背景的分割阈值记为T,前景的像素个数记为,后景的像素个数记为。设为属于前景的像素点数占整幅图像的比例,为属于后景的像素点数占整幅图像的比例,分别如式6和式7所示:

                                               

      • 实验结果

采集的香蕉图片如图3.1所示,采用加权平均值法对香蕉进行灰度化处理,得到它的灰度直方图如图3.2所示。

参考图3.2可知,150是灰度直方图的低谷。因为灰度直方图的横坐标是图像中各像素点的灰度级,所以150到255代表着灰度图像中亮度偏高的区域,结合灰度图可以进一步确定为背景,则阈值150能将香蕉图像中的香蕉斑点分割出来。分割出的香蕉二值图如图3.3所示:

    • 不同特征下香蕉图像的分割

      • 不同特征值的选取

由阈值分割可以发现,当图片的特征值未选取好时,香蕉皮与背景明暗程度相似,此时通过直方图难以将香蕉整体提取出来,因此我们需要改变灰度图像的特征值来区分图像上的各层次信息。

香蕉原始图像采用的是RGB模型。灰度化则是将RGB三种混合颜色的图像转换为只含有亮度信息的单一灰度图像。通常情况下,数学图像被量化为256个级别,一个像素点有255*255*255种颜色变化范围。颜色信息越多,图像处理过程越复杂。与彩色图像相比,灰度图像只有黑白两色,亮度信息不同,黑色的程度也不同。通过图3-1,可以看出香蕉和背景之间的颜色和亮度差异很明显,因此将图像转换为灰度图像是有益的。此外,灰度化处理可以将RGB三个通道变为单个通道,将图像的位深度从24位降低到8位,从而极大地简化了后续的数据处理。目前彩色图像转化为灰度图像有四种常用方法:

分量法:将彩色香蕉图像的R、G、B三分量的亮度之一作为灰度图像值。如式(11)所示:

                                                

最大值法:将彩色图像的R、G、B三分量亮度最大值作为灰度图像的灰度值。如式(12)所示:

                                     

平均值法:平均值法是将R、G、B三个分量的亮度进行平均,从而获得目标的灰度值。如式(13)所示:

                               

(4)加权平均值法:加权平均值法是在平均值法的基础上根据实际情况的需要以不同的权值进行加权,从而突出某个通道的重要性,使其更加符合实际情况的需要。人眼对绿色敏感度最高,对蓝色敏感度最低,故采用心理学灰度公式,如式(14)所示:

                                     

      • 实验结果

挑选香蕉褐变过程中的4张照片(图3.4),选取4号图像用分量法进行判断。由四号图像的三种分量法灰度化处理图(图3.5)可以看出:当选择的目标对象为香蕉整体面积时,蓝色分量下香蕉整体面积颜色较深与白色背景差距明显易于阈值分割的阈值选取;当选择的目标对象是香蕉表面斑点面积时,由四号图像的三种分量法灰度化处理图(图3.5)可以看出绿色分量下的香蕉表面斑点颜色相比于香蕉整体背景对比度较高,更容易将斑点从香蕉整体上提取出来。综上所述,采用分量法进行特征值选取时,目标对象是香蕉整体面积则选用蓝色分量;目标对象是香蕉表面斑点则选用绿色分量[19]。

当研究对象目标是香蕉整体面积时,将基于蓝色分量的香蕉灰度图(图3.7)和基于加权平均值法的香蕉灰度图(图3.6)进行比较分析,香蕉整体面积与背景的对比都十分明显,结合他们的灰度直方图可以发现双方在灰度直方图的灰度级上都存在2个“峰”,结合图像不难理解第一个“峰”代表香蕉的灰度,第二个“峰”则是背景的灰度。基于蓝色分量的香蕉不同阶段的灰度直方图(图3.8)两个峰间隔较远,基于加权平均值法的香蕉不同阶段的灰度直方图(图3.9)两个峰的有一定的相连,并且随着香蕉褐变的加深,难以确定“谷底”。所以预测采用基于蓝色分量的香蕉不同阶段的灰度图能容易并且更好地进行香蕉整体的一个分割。

当研究对象是香蕉表面斑点面积时,基于加权平均值法的香蕉不同阶段的灰度图(图3.6)与基于绿色分量法的香蕉灰度图(图3.10)相比,二者在香蕉斑点和背景的对比度方面都有一定的优势,基于加权平均值法的香蕉灰度图的斑点和香蕉皮颜色相对偏浅,而基于绿色分量法的香蕉灰度图则相对偏深,无法判断二者谁更优,所以在香蕉斑点分离的特征值方面,需结合阈值的选取进一步探讨。

    • 特征值下阈值化处理的实验结果与对比分析

      • 香蕉整体图像的分割

在香蕉整体图像的阈值方面,由于香蕉颜色与背景颜色差异较大,环境产生的干扰较小,我们可以直接根据灰度直方图进行阈值的选取。与图像灰度化处理的分析相同,基于直方图阈值分割的结果如下所示;利用蓝色分量分割出的香蕉结果如图3.11所示,图中可以看出基于蓝色分量的特征选择不仅能很好地将香蕉整体从背景中分量出来,还能清晰地提取出香蕉的边缘特点,噪声干扰较少,检测效果好。

      • 香蕉斑点图像的分割

选取褐变过程中香蕉不同阶段的采集图像(图3.4)中的5号香蕉,采用加权平均值处理得到灰度图,将灰度图分别采用3种阈值分割法来提取相同的香蕉图像。经分割发现迭代阈值分割和otus分割效果都不理想,不能很好的将香蕉斑点从图像中提取出来,反而单纯利用MatLab的im2bw算法能分离香蕉斑点和香蕉图像。处理后的图像如图3.12所示。选取5号图片,利用绿色分离的分量法处理得到灰度图像,利用MatLab中的im2bw算法进行阈值分割得到图3.13,将图3-12和图3.13二者的阈值分割图像进行对比,发现用加权平均法处理得到的图3.12在细节上的效果更好。

      • 香蕉斑点面积比的提取

香蕉斑点面积像素点个数用A表示,香蕉整体面积像素点个数用B表示,香蕉斑点面积比用ω表示。因此我们所需的香蕉斑点面积比ω可以通过香蕉斑点面积像素点个数除以香蕉整体面积像素点个数所得。对图像上的香蕉表面斑点面积而言,设图像中正方形像素的边长为单位1则所需的斑点面积可以通过对二值矩阵进行遍历查询,属于该区域的像素个数利用统计求和所得。公式15如下所示:

上述式子中,Q表示目标区域。

同理可得香蕉整体面积的像素点。将香蕉斑点面积像素点除以香蕉整体面积像素点就可以得到香蕉褐变斑点面积比,采集的香蕉图像的褐变斑点面积比如下表3.1所示:

表 3.1 香蕉斑点像素比例

正比例

左比例

背比例

右比例

总比例

0.0278

0.0134

0.0072

0.0202

0.0169

0.0179

0.0151

0.0092

0.01771

0.0150

0.0478

0.0444

0.0237

0.0338

0.0374

0.2130

0.1045

0.0486

0.0875

0.1107

0.3067

0.1376

0.1073

0.1470

0.1700

0.3599

0.2066

0.1759

0.1935

0.2289

0.4309

0.3001

0.2897

0.3074

0.3295

0.4370

0.4257

0.4320

0.4370

0.4326

0.4646

0.5236

0.4631

0.4646

0.4796

0.5094

0.6676

0.6364

0.5094

0.5779

0.6288

0.7958

0.7599

0.6288

0.7018

    • 小结

本次研究用了一根香蕉褐变过程中的4张图片进行斑点视觉的监控。通过实践得出,利用分量法进行蓝色分量的提取后的香蕉灰度图最适合对图像中香蕉整体进行分离,而利用加权平均法处理后的香蕉灰度图适合香蕉表面斑点的分离。在香蕉整体的分割中,阈值是通过研究图像的灰度直方图,选取香蕉与背景的中间的“谷底”确定;而香蕉斑点的分割是调用Matlab中的im2bw算法进行实现。最后根据分割得到的目标二值图像得到香蕉斑点像素比,接下来将以此为基础展开进一步研究。

  • 模糊分类

    • 模糊性及其表示

模糊性是指客观事物在性质和归属方面存在不确定性,这种不确定性的根源在于类似事物之间存在一系列过渡状态,它们相互渗透和贯通,使得彼此之间没有明确的界限[20]。

为了解决类似事物之间没用明确的界限的问题,扎德推广了经典集合论中特征函数的取值范围,从原先的{0,1}拓展到了区间[0,1],同时还引入了模糊集和隶属函数的概念。

    • 隶属函数

      • 隶属函数的特点

隶属度函数是模糊逻辑中的重要概念,用于描述模糊集合中各元素与某个模糊概念之间的隶属程度。隶属度函数的定义域通常是指某个变量或者特征的取值范围。例如,在处理灰度图像时,隶属度函数的定义域通常是0到255之间的整数。隶属度函数的值域是[0, 1]区间内的实数,表示某个元素与模糊集合之间的隶属程度。隶属度函数的取值范围越接近1,表示元素越符合模糊概念。隶属度函数的形状可以是任意的,通常可以使用各种函数形式来定义,如三角形、梯形、高斯分布等。隶属度函数可以用于描述不确定性和模糊性问题,它允许元素不仅仅属于某个概念或不属于某个概念,而是具有不同程度的隶属关系。通过定义隶属度函数,可以将模糊集合中的元素与模糊概念之间的关系形式化地表达出来。隶属度函数的特点使得模糊逻辑可以应用于各种模糊和不确定性问题的处理和分析中。

      • 隶属函数建立方法

在使用模糊集描述模糊关系时,建立隶属函数是一个至关重要的任务,它直接影响问题解决的质量[21]。但由于模糊性本身的复杂性和多样性,很难用一种统一的模式来建立隶属函数,因此建立隶属函数是相当困难的。目前常用的隶属函数的建立方法有:对比排序法,专家评判法和基本概念扩充法等。

  1. 模糊统计法

把论域U分成若干个区间,寻找n个评判员对若干个区间赋予模糊概念。假设n个评判员给出的区间中覆盖某个区间的次数为m,则当n足够大的时候,如式16所示

                                                    

因此对每个区间的中值点求出隶属度函数后就可以绘制出A的隶属度函数曲线。该方法是基于统计学基础,通过采集大量数据得出隶属函数。(该方法需要大量统计并且随机评判员难以给出有效的评判)

2.专家评判法

设论域U={u1,u2,...,m},A是U上待定的隶属函数模糊集。请m位专家(赋予不同的权值)分别对每一个给出一个隶属度估计值(i=1,2,...,n; j=1,2,...,m),求出其平均值为式17和离差为式18。

                                                 

离差越小则专家评判的一致性越高。将离差与事先给定的阈值ε进行比较,如果大于ε,则需要专家重新给出估计值,重新计算平均值和离差,重复该过程直至离差小于等于ε为止。然后让专家给出自己所估计值的确信度,求出专家们给的确信度的平均值。若该平均值达到一定的阈值吗、,则就

当作的隶属度,i = 1,2,...,n

考虑到每个专家的情况不同,当希望某些专家意见占比较大时,则可以根据不同专家的意见所占比重的不同给出不同的权值从而优化隶属函数的建立过程[22]。

3.对比排序法

对于有限论域,如果为每个元素直接确定隶属度很困难,我们可以通过比较论域中的每两个元素来确定一个元素相对于另一个元素隶属于某个模糊概念的隶属度。然后,对每个元素的所有隶属度进行加权平均,得到最终的隶属度。这种方法可以简化模糊概念的建立过程,尤其是当论域中元素的数量较多时。

4、基本概念扩充法

基于基本模糊概念的隶属函数,我们可以运用各种运算符导出与之相关的其他模糊概念的隶属函数。若我们已经拥有了基本模糊概念的隶属函数,我们可以考虑对它们进行复合或加权运算,以得到相应的复合模糊概念的隶属度函数。这些复合模糊概念可以表示更为复杂的语义概念,例如“非常高”、“相对矮”等等。

      • 典型的隶属度函数

典型的隶属函数有11种,例如三角形隶属函数、梯形隶属函数、Z型隶属函数、广义钟型隶属函数、双S型隶属函数、高斯型隶属函数、联合高斯型隶属函数等。在模糊控制中应用较多的隶属函数有一下三种[23]:

(1)梯形隶属函数

梯形隶属度函数由4个参数a,b,c,d确定的,即式19

              

式19中,参数a和b确定梯形的底部位置,而参数b和c确定梯形的顶部宽度

(2)三角形隶属函数

三角形隶属函数由a,b,c确定,即式20

                     

式20中,参数a和c确定三角形的底部位置,而参数b确定三角形的峰。

(3)S形隶属函数

S形隶属函数由参数a和c确定,它的式子为式21

                          

式中参数a的正、负决定了S形隶属函数的开口向左还是向右,用来表示正大还是负大的概念。

三角形隶属函数和梯形隶属函数可以用来表示那些具有中间模糊状态的概念,例如“中年人”、“中等个子”等。而S形隶属函数则适用于描述一个完整的模糊概念,例如人的胖瘦程度等。

    • 模糊推理

模糊推理用于处理模糊概念和模糊规则,从模糊输入推导出模糊输出。它基于隶属度函数和模糊规则的描述,模拟人类推理的模糊性和不确定性。

模糊推理的基本流程如下:1、模糊化:将输入变量的实际值映射到对应的隶属函数,得到输入变量的隶属度。这个过程将实数值转化为隶属度值,反映了元素对于模糊概念的隶属程度。2、模糊规则匹配:将模糊化后的输入与模糊规则进行匹配。模糊规则通常以IF-THEN的形式表示,其中IF部分是模糊输入变量的条件,THEN部分是对应的模糊输出变量的结论。匹配过程根据输入变量的隶属度和模糊规则的条件,计算每个规则的激活度。3、推理:根据模糊规则的激活度和规则的THEN部分,推导出模糊输出的隶属度。常用的推理方法包括最小最大法、加权平均法等。推理过程根据规则的激活度和输出变量的隶属度,计算输出变量的隶属度。4、去模糊化:将模糊输出的隶属度映射回实数值,得到模糊输出的具体结果。去模糊化过程根据模糊输出的隶属度和其对应的隶属函数,计算输出变量的实数值。

    • 模糊分类实验

将香蕉四个面的斑点像素比例作为模糊分类器的四个输入,将香蕉等级分类作为输出。

定义香蕉斑点比例的模糊子集:斑点少、斑点较多、斑点多;

本次研究香蕉表面的隶属度函数如图所示:

定义香蕉等级的模糊子集:好、中、差,并定义的模糊子集赋予隶属函数,如图4.2所示:

根据专家经验建立模糊规则:当香蕉的四个面出现一个较多时,香蕉定义为好;当香蕉的四个面出现一个多或2个较多或3个较多时,香蕉等级定义为中;当香蕉的四个面出现1个较多和一个多时,定义香蕉的等级为中;当香蕉的四个面出现2个较多和1个多或2个及以上的多时,定义香蕉等级为差。香蕉的模糊规则如表4.1所示:

表4.1 香蕉分类的模糊表

正面斑点

较多

右侧斑点

背面斑点

较多

较多

较多

左侧斑点

较多

较多

较多

较多

对被激活的控制规则进行模糊逻辑推理,求出逻辑推理总输出,最后将模糊量清晰化得出分类结果。

    • 结论

由模糊分类器得出研究所采集的香蕉的等级分类如下表4.1所示:

表4.1 香蕉的等级分类结果

香蕉序号

正比例

左比例

背比例

右比例

人工评判下的香蕉

等级分类

算法评判下的香蕉

等级分类

 1

0.0278

0.0134

0.0072

0.0202

2

0.0179

0.0151

0.0092

0.0177

3

0.0478

0.0444

0.0237

0.0338

4

0.2130

0.1045

0.0486

0.0875

5

0.3067

0.1376

0.1073

0.1470

6

0.3599

0.2066

0.1759

0.1935

7

0.4309

0.3001

0.2897

0.3074

8

0.4370

0.4257

0.4320

0.4370

9

0.4646

0.5236

0.4631

0.4646

10

0.5094

0.6676

0.6364

0.5094

11

0.6288

0.7958

0.7599

0.6288

在本研究中,测量了11张香蕉图片的香蕉成熟度等级,并记录一系列数据。将这些数据和实验真值进行比较发现在11张香蕉图片中仅存在一张图片与人工评判不符。虽然在这样的方法中对背景的颜色存在一定的要求,但是总体上该方法能够实现对香蕉品质成熟度等级分类。

  • 结论与展望

    • 结论

本次研究对香蕉的褐变情况进行检测识别和自动分类研究作出深入研究,主要完成的工作涉及以下方面:

(1)在图像的处理中,使用阈值分割法对香蕉图像进行分割。通过不同特征值的选取准确地分割出香蕉整体和香蕉的表面斑点面积,不仅减少了图像处理所需的时间也为后期分类提高了工作效率。

(2)通过遍历和统计二值图像像素点确定香蕉整体面积与香蕉斑点面积的比例。建立香蕉斑点比例的模糊隶属函数,设定模糊规则,利用模糊分类器实现香蕉的等级分类。

    • 展望

本研究基于计算机视觉对香蕉进行无损检测和分类研究,实验检测和分类结果较为乐观,但是实验结果与实情存在一定的偏差。本次研究在能力上有所缺陷,还有许多问题有待研究以及进一步完善,因此在现有基础上提出待研究的问题:

(1)本次研究只进行了单根香蕉的视觉识别。在现实中,香蕉都是以一簇形式存在,香蕉之间存在相互遮挡,这将需要对香蕉总的斑点进行一个科学性的估算才能实现合理的分类。

(2)本次研究主要是在理想实验环境中进行,避免了外界光源背景等一系列因素对实验环境产生的影响,因此如何在复杂条件下采集高质量的香蕉图片是目前需要解决的问题。

(3)香蕉在采摘后因为环境温度和湿度的作用下,其褐变速率会进行不规则变化,难以控制成熟时间。因此如何建立软件通过采集周围环境信息,模拟褐变速率曲线和香蕉成熟时间变化曲线并将数据反馈用户是未来重要的一个步骤。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

下饭的王

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值