域适应目标检测算法总结

本文总结了域适应目标检测算法,旨在解决训练数据与测试数据分布不一致导致的检测性能下降问题。主要思路是对齐源域和目标域的特征分布,减少领域偏移的影响。介绍了对抗学习在域对齐中的应用,以及前景、类别和差异对齐方法。通过调整不同部分的对齐策略,提升模型在目标域的检测性能。文章还探讨了伪标签和辅助网络等优化方法,以及相关参考算法。
摘要由CSDN通过智能技术生成

注:全文原创,未经允许,禁止转载!

概述

  虽然目标检测算法的研究已经取得了相当可观的进展,但是传统目标检测算法的检测性能往往会受到训练数据分布的约束,在测试时,只有测试数据和训练数据分布一致时,检测器的检测性能才能达到最好。但是现实世界中的目标检测容易面临来自视点、外观、背景、光照以及图像质量等方面的巨大差异,可能会导致训练数据和测试数据之间分布不一致,即领域偏移问题,从而影响检测器的检测性能。以自动驾驶为例,如下图所示,训练数据往往是在晴朗的天气下收集的,但在现实应用中不可避免地会遇到雾天、雨天等情况,此类复杂的天气将会严重影响汽车对前方物体的检测,不利于分析当前的路况,最终会影响行驶时的决策。

在这里插入图片描述

  针对这种训练数据与测试数据分布不一致,即领域偏移的问题,一种常见的解决方法就是领域自适应算法(简称域适应),通过对齐两个领域的特征分布

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

视觉萌新、

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值