注:全文原创,未经允许,禁止转载!
概述
虽然目标检测算法的研究已经取得了相当可观的进展,但是传统目标检测算法的检测性能往往会受到训练数据分布的约束,在测试时,只有测试数据和训练数据分布一致时,检测器的检测性能才能达到最好。但是现实世界中的目标检测容易面临来自视点、外观、背景、光照以及图像质量等方面的巨大差异,可能会导致训练数据和测试数据之间分布不一致,即领域偏移问题,从而影响检测器的检测性能。以自动驾驶为例,如下图所示,训练数据往往是在晴朗的天气下收集的,但在现实应用中不可避免地会遇到雾天、雨天等情况,此类复杂的天气将会严重影响汽车对前方物体的检测,不利于分析当前的路况,最终会影响行驶时的决策。
针对这种训练数据与测试数据分布不一致,即领域偏移的问题,一种常见的解决方法就是领域自适应算法(简称域适应),通过对齐两个领域的特征分布