目标检测域适应D_Adapt模型

1. Scene one:目标域存在标注文件

1.1 安装
# 下载代码
git clone https://github.com/thuml/Transfer-Learning-Library.git
# 其他的包的安装参考代码链接中的步骤
1.2 数据集准备

采用VOC数据集的格式,我把源域数据放在VOC2007文件夹中,目标域数据放在VOC2012文件夹中。

Transfer-Learning-Library/examples/domain_adaptation/object_detction/datasets/
├── VOC2007
│   ├── Annotations
│   ├──ImageSets
│   └──JPEGImages
└── VOC2012
    ├── Annotations
    ├── ImageSets
    └── JPEGImages
1.3 训练

首先需要修改代码中的类别信息:

'''Transfer-Learning-Library/examples/domain_adaptation/object_detection/config/faster_rcnn_R_101_C4_voc.yaml'''

    NUM_CLASSES: 20 # 修改为自己的类别数量
#------------------------------------------------------------------------------------------
'''Transfer-Learning-Library/tllib/vision/datasets/object_detection/__init__.py'''

class VOCBase:
    # 修改为自己数据集的类别名字
    class_names = (
        "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat",
        "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person",
        "pottedplant", "sheep", "sofa", "train", "tvmonitor"
    )

原代码中只能加载jpg格式的图片,将其进行调整(如果你的图片全是jpg格式的则不需要修改):

'''Transfer-Learning-Library/tllib/vision/datasets/object_detection/__init__.py'''

    def __init__(self, root, split="trainval", year=2007, ext=['.jpg', '.jpeg', '.bmp', '.png'], download=True):
    # def __init__(self, root, split="trainval", year=2007, ext='.jpg', download=True):
    
        for e in ext:
            if os.path.exists(os.path.join(dirname, "JPEGImages", fileid + e)):
                jpeg_file = os.path.join(dirname, "JPEGImages", fileid + e)
                break
        # jpeg_file = os.path.join(dirname, "JPEGImages", fileid + ext)

步骤一:使用带有ResNet-101Faster-RCNN在源域上预训练一个模型
该步骤的配置文件部分可根据需求修改的训练参数:

# Transfer-Learning-Library/examples/domain_adaptation/object_detection/config/faster_rcnn_R_101_C4_voc.yaml

SOLVER:
	STEPS: (12000, ) # 控制各部分预热开始的轮次,数值要小于MAX——ITER
    MAX_ITER: 16000 # 训练的轮次
    WARMUP_ITERS: 100 # 控制每次预热的步长数(不是非常确定)
    CHECKPOINT_PERIOD: 2000 # 每2000个轮次保存一次模型
    IMS_PER_BATCH: 4 # 训练的batch_size
TEST:
  EVAL_PERIOD: 2000 # 每2000个轮次模型在test数据集上验证一遍
VIS_PERIOD: 500 # the period to run visualization. Set to 0 to disable.

训练命令:

# 参考source_only.sh
CUDA_VISIBLE_DEVICES=0 python source_only.py \
  --config-file config/faster_rcnn_R_101_C4_voc.yaml \
  -s VOC2007 datasets/VOC2007 -t VOC2012 datasets/VOC2012 \
  --test VOC2012 datasets/VOC2012 --finetune \
  OUTPUT_DIR logs/source_only/faster_rcnn_R_101_C4/voc

步骤二:在源域和目标域上进行域适应训练
修改域适应时配置文件的类别信息:

'''Transfer-Learning-Library/examples/domain_adaptation/object_detection/d_adapt/config/faster_rcnn_R_101_C4_voc.yaml'''

    NUM_CLASSES: 20 # 修改为自己的类别数量

该步骤的部分训练参数:

args.epochs-c # 训练类别适配器的迭代次数
args.epochs-b # 训练边框适配器的迭代次数
args.iters_per_epoch-c # 训练类别适配器的每一次迭代中的总轮次
args.iters_per_epoch-b # 训练边框适配器的每一次迭代中的总轮次
args.pretrain_epochs-b # 边框适配器在源域上预训练的迭代次数
cfg.SOLVER.MAX_ITER # 训练目标检测器的总轮次

训练命令:

# 参考d_adapt.sh
pretrained_models=../logs/source_only/faster_rcnn_R_101_C4/voc/model_final.pth
CUDA_VISIBLE_DEVICES=0 python d_adapt.py \
  --config-file config/faster_rcnn_R_101_C4_voc.yaml \
  -s VOC2007 ../datasets/VOC2007  \
  -t VOC2012 ../datasets/VOC2012 --test VOC2012 ../datasets/VOC2012 \
  --finetune --bbox-refine \
  OUTPUT_DIR logs/faster_rcnn_R_101_C4/voc/phase1 MODEL.WEIGHTS ${pretrained_models} SEED 0
1.4 评估

训练得到最终模型,输出在测试集上的评估结果

CUDA_VISIBLE_DEVICES=0 python source_only.py \
  --config-file config/faster_rcnn_R_101_C4_voc.yaml \
  -s VOC2007 datasets/VOC2007 -t VOC2012 datasets/VOC2012 \
  --test VOC2012 datasets/VOC2012 --eval-only \
  MODEL.WEIGHTS d_adapt/logs/faster_rcnn_R_101_C4/voc/phase1/model_final.pth

--test这个参数用于指定测试集,代码中(Transfer-Learning-Library/tllib/vision/datasets/object_detection/__init__.py)针对VOC2007VOC2012暂时只提供了三种选项:

  • VOC2007Test读取VOC2007test.txt数据
  • VOC2007读取VOC2007trainval.txt数据
  • VOC2012读取VOC2012trainval.txt数据
1.5 可视化

对测试集的识别结果可视化

CUDA_VISIBLE_DEVICES=0 python visualize.py --config-file config/faster_rcnn_R_101_C4_voc.yaml \
  --test VOC2012 datasets/VOC2012 --save-path visualizations/d_adapt/voc \
  MODEL.WEIGHTS d_adapt/logs/faster_rcnn_R_101_C4/voc/phase1/model_final.pth

2. Scene two:目标域没有标注文件

作者的原代码中需要输出模型在目标域上的识别效果,所以默认是目标域有标注文件的。如果你的目标域是没有标注文件的,需要先对代码的一些地方进行修改后再进行训练。
首先数据集部分,仍然是源域数据集存放于VOC2007文件夹下,目标域数据集(不带标注文件)存放于VOC2012文件夹下,其中VOC2012/Annotations目录下是没有文件的。
步骤一:需要修改两处,其余的操作就跟上面一样,同样能得到一个模型logs/source_only/faster_rcnn_R_101_C4/voc/model_final.pth

'''Transfer-Learning-Library/examples/domain_adaptation/object_detection/config/faster_rcnn_R_101_C4_voc.yaml'''

TEST:
  EVAL_PERIOD: 0 # 设置为0模型则不对test数据集进行验证
#------------------------------------------------------------------------------------------
'''Transfer-Learning-Library/examples/domain_adaptation/object_detection/source_only.py'''

    # return utils.validate(model, logger, cfg, args) # 将这一行注释掉

步骤二:需要修改五处,其余操作就跟上面一样,得到最终模型d_adapt/logs/faster_rcnn_R_101_C4/voc/phase1/model_final.pth

'''Transfer-Learning-Library/examples/domain_adaptation/object_detection/d_adapt/config/faster_rcnn_R_101_C4_voc.yaml'''

TEST:
  EVAL_PERIOD: 0
#------------------------------------------------------------------------------------------
'''Transfer-Learning-Library/tllib/vision/datasets/object_detection/__init__.py'''

def load_voc_instances(dirname: str, split: str, class_names, ext='.jpg', bbox_zero_based=False):
    with PathManager.open(os.path.join(dirname, "ImageSets", "Main", split + ".txt")) as f:
        fileids = np.loadtxt(f, dtype=np.str)

    annotation_dirname = PathManager.get_local_path(os.path.join(dirname, "Annotations/"))
    dicts = []
    skip_classes = set()
    for fileid in fileids:
        anno_file = os.path.join(annotation_dirname, fileid + ".xml")
        for e in ext:
            if os.path.exists(os.path.join(dirname, "JPEGImages", fileid + e)):
                jpeg_file = os.path.join(dirname, "JPEGImages", fileid + e)
                break
        # 当数据集名称为VOC2012时,也就是为目标域,标注信息修改为空列表
        if dirname.split('/')[-1] == "VOC2012":
            image = cv2.imread(jpeg_file)
            height, width = image.shape[:2]
            r = {
                "file_name": jpeg_file,
                "image_id": fileid,
                "height": height,
                "width": width,
                "annotations":[]
            }
        else:
            with PathManager.open(anno_file) as f:
                tree = ET.parse(f)

            r = {
                "file_name": jpeg_file,
                "image_id": fileid,
                "height": int(tree.findall("./size/height")[0].text),
                "width": int(tree.findall("./size/width")[0].text),
            }
            instances = []

            for obj in tree.findall("object"):
                cls = obj.find("name").text
                if cls not in class_names:
                    skip_classes.add(cls)
                    continue

                bbox = obj.find("bndbox")
                bbox = [float(bbox.find(x).text) for x in ["xmin", "ymin", "xmax", "ymax"]]
                if bbox_zero_based is False:
                    bbox[0] -= 1.0
                    bbox[1] -= 1.0
                instances.append(
                    {"category_id": class_names.index(cls), "bbox": bbox, "bbox_mode": BoxMode.XYXY_ABS}
                )
            r["annotations"] = instances

        dicts.append(r)
    print("Skip classes:", list(skip_classes))
    return dicts
#------------------------------------------------------------------------------------------
'''Transfer-Learning-Library/examples/domain_adaptation/object_detection/d_adapt/d_adapt.py'''

        # data_loader_validation = category_adaptor.prepare_validation_data(prop_t_fg + prop_t_bg) # 注释掉
    	# category_adaptor.fit(data_loader_source, data_loader_target, data_loader_validation)
        category_adaptor.fit(data_loader_source, data_loader_target)

            # data_loader_validation = bbox_adaptor.prepare_validation_data(prop_t_fg) # 注释掉
            # bbox_adaptor.validate_baseline(data_loader_validation) # 注释掉
            # bbox_adaptor.fit(data_loader_source, data_loader_target, data_loader_validation)
            bbox_adaptor.fit(data_loader_source, data_loader_target)
            
    # train_target_dataset = get_detection_dataset_dicts(args.targets, proposals_list=prop_t_fg+prop_t_bg)
    train_target_dataset = get_detection_dataset_dicts(args.targets, filter_empty=False, proposals_list=prop_t_fg+prop_t_bg)
    
    # return utils.validate(model, logger, cfg, args) # 注释掉
#------------------------------------------------------------------------------------------
'''Transfer-Learning-Library/examples/domain_adaptation/object_detection/d_adapt/category_adaptation.py'''

        # print("best_acc1 = {:3.1f}".format(best_acc1)) # 注释掉
#------------------------------------------------------------------------------------------
'''Transfer-Learning-Library/examples/domain_adaptation/object_detection/d_adapt/bbox_adaptation.py'''

            # ious_t = AverageMeter("IoU (t)", ":.4e") # 注释掉
    
            # ious_t_adv = AverageMeter("IoU (t, adv)", ":.4e") # 注释掉
        
            # progress = ProgressMeter(
                # args.iters_per_epoch,
                # [batch_time, data_time, losses, trans_losses, ious, ious_t, ious_s_adv, ious_t_adv],
                # prefix="Epoch: [{}]".format(epoch))
            progress = ProgressMeter(
                args.iters_per_epoch,
                [batch_time, data_time, losses, trans_losses, ious, ious_s_adv],
                prefix="Epoch: [{}]".format(epoch))
            
                # gt_boxes_t = labels_t['gt_boxes'].to(device).float() # 注释掉
                
                # ious_t.update(iou_between(pred_boxes_t.cpu(), gt_boxes_t.cpu()).mean().item(), x_s.size(0)) # 注释掉
                
                # ious_t_adv.update(iou_between(pred_boxes_t_adv.cpu(), gt_boxes_t.cpu()).mean().item(), x_s.size(0)) # 注释掉
                
        # print("best_iou = {:3.1f}".format(best_iou)) # 注释掉

3. 域适应训练时终端输出的参数的解析

Write to cache: logs/faster_rcnn_R_101_C4/voc/phase1/cache/proposal/.._datasets_VOC2012_trainval_fg.json
Write to cache: logs/faster_rcnn_R_101_C4/voc/phase1/cache/proposal/.._datasets_VOC2012_trainval_bg.json
Write to cache: logs/faster_rcnn_R_101_C4/voc/phase1/cache/proposal/.._datasets_VOC2007_trainval_fg.json
Write to cache: logs/faster_rcnn_R_101_C4/voc/phase1/cache/proposal/.._datasets_VOC2007_trainval_bg.json
'''
由source_only.py训练得到的预训练模型在目标域/源域数据集上生成前/背景proposals并将其进行保存
'''
----------------------------------------------------
dict_keys([0, 1, 2, 3, 4, 5, 6, 7]) # 数据集所有类别的编号,其中最后一个代表bg
----------------------------------------------------
0 5 0
1 0 0
2 53 0
3 0 0
4 0 0
5 0 0
6 0 0
7 799 0
'''
print(c, len(s), int(self.confidence_ratio * len(s)))
c为类别编号,s为该类别的所有proposals的置信度,len(s)表示预训练模型在目标域上预测得到该类别的proposals数量,self.confidence_ratio=0.0
'''
----------------------------------------------------
confidence threshold for each category:
         0 0.422
         1 1.0
         2 0.763
         3 1.0
         4 1.0
         5 1.0
         6 1.0
         7 1.0
'''
s.sort(reverse=True)
per_category_thresholds[c] = s[int(self.confidence_ratio * len(s))] if len(s) else 1.
print('\t', c, round(per_category_thresholds[c], 3))
第二列表示在目标域上预测得到的某类别的proposals的最高类别置信度作为confidence threshold,不存在预测为某类别的proposals,则该类别的confidence threshold为1.0
'''
----------------------------------------------------
lr: 0.001 # 每个epoch的学习率
----------------------------------------------------
Epoch: [0][0/5] Time 135.6 (135.6)      Data 13.8 (13.8)        Loss 2.57 (2.57)        Loss(t) 0.00 (0.00)     Trans Loss 0.82 (0.82)  Cls Acc 0.0 (0.0)       Domain Acc 50.0 (50.0)
'''
Time:每个轮次的耗时
Data:每个轮次中加载数据的耗时
Loss:类别适配器的总损失 loss = cls_loss + transfer_loss * args.trade_off + cls_loss_t
Loss(t):目标检测器对目标域proposals预测的类别和类别适配器预测的类别的损失 RobustCrossEntropyLoss()
Trans Loss:判别器的损失,作者论文的式(3) ConditionalDomainAdversarialLoss()
Cls Acc:类别适配器对源域proposals预测的类别的准确率
Domain Acc:域判别器的准确率
'''
----------------------------------------------------
Test: [ 0/30]   Time  5.396 ( 5.396)    Loss 3.7713e-03 (3.7713e-03)    Acc@1 100.00 (100.00)
'''
每个epoch后类别适配器对目标域proposals(包括前景和背景)的类别损失和准确率
'''
----------------------------------------------------
 * Acc@1 83.333 # 平均准确率
----------------------------------------------------
global correct: 83.3
mean correct:nan
mean IoU: nan
+---------------+-------+-------------------+
|     class     |  acc  |        iou        |
+---------------+-------+-------------------+
|     class 0   |  nan  |        nan        |
|     class 1   |  nan  |        nan        |
|     class 2   |  nan  |        nan        |
|     class 3   |  nan  |        nan        |
|     class 4   |  0.0  |        0.0        |
|     class 5   |  nan  |        nan        |
|     class 6   |  0.0  |        0.0        |
|       bg      | 100.0 | 83.33332824707031 |
+---------------+-------+-------------------+
'''
Get the accuracy and IoU for each class in the table format
如果类别适配器训练过程中一直是上面这样的情况,只有背景bg有acc和iou,那么继续运行在边界框适配器训练位置会报错,把d_adapt/logs/faster_rcnn_R_101_C4/voc/phase1下的文件全删掉,重新跑(可把类别适配器训练的epoch数增多点),当出现别的类别有acc和iou值时才能正常运行后面的步骤
'''
----------------------------------------------------
best_acc1 = 83.3 # 类别适配器对目标域的proposals类别识别最高准确率
100%|##########| 499/499 [00:35<00:00, 13.87it/s] # 类别适配器对目标域的前景proposals生成预测类别标签并保存
Write to cache: logs/faster_rcnn_R_101_C4/voc/phase1/cache/feedback/.._datasets_VOC2012_trainval_fg.json
100%|##########| 800/800 [00:44<00:00, 17.90it/s] # 类别适配器对目标域的背景proposals生成预测类别标签并保存
Write to cache: logs/faster_rcnn_R_101_C4/voc/phase1/cache/feedback/.._datasets_VOC2012_trainval_bg.json
----------------------------------------------------
Calculate baseline IoU:
100%|##########| 2/2 [01:33<00:00, 46.85s/it]
 * Baseline IoU 0.000
'''
每个epoch后边框适配器在目标域proposals(只有前景)的预测的边框与真实边框的平均IOU
'''
----------------------------------------------------
Epoch: [0][0/5] Time 42.0 (42.0)        Data 32.7 (32.7)        Loss 0.70 (0.70)        IoU 6.0772e-01 (6.0772e-01)
'''
边框适配器在源域上的预训练
Time:每个轮次的耗时
Data:每个轮次中加载数据的耗时
Loss:边框适配器对源域proposals的边框回归损失 smooth_l1_loss()
IoU:边框适配器对源域proposals预测的边框和真实边框的平均IoU
'''
----------------------------------------------------
Epoch: [0][0/5] Time 0.9 (0.9)  Data 0.0 (0.0)  Loss 0.20 (0.20)        Trans Loss -1.16 (-1.16)        IoU 8.0306e-01 (8.0306e-01)     IoU (t) 0.0000e+00 (0.0000e+00) IoU (s, adv) 8.2482e-01 (8.2482e-01)      IoU (t, adv) 0.0000e+00 (0.0000e+00)
'''
边框适配器在两个域上的训练
Time:每个轮次的耗时
Data:每个轮次中加载数据的耗时
Loss:边框适配器的总损失 loss = reg_loss - transfer_loss * args.trade_off
Trans Loss:对抗回归网络G^reg_{adv}的损失,作者论文的式(6) RegressionMarginDisparityDiscrepancy()
IoU:回归网络G^reg对源域proposals预测的边框和真实边框的平均IoU
IoU (t):回归网络G^reg对目标域proposals预测的边框和真实边框的平均IoU
IoU(s, adv):对抗回归网络G^reg_{adv}对源域proposals预测的边框和真实边框的平均IoU
IoU (t, adv):对抗回归网络G^reg_{adv}对目标域proposals预测的边框和真实边框的平均IoU
'''
----------------------------------------------------
best_iou = 0.0 # 边框适配器训练过程中在目标域上最好的IOU值
----------------------------------------------------
100%|##########| 139/139 [00:05<00:00, 27.23it/s] # 边界适配器对目标域的前景proposals生成预测边界框并保存
Write to cache: logs/faster_rcnn_R_101_C4/voc/phase1/cache/feedback_bbox/.._datasets_VOC2012_trainval_fg.json
100%|##########| 712/712 [00:22<00:00, 31.12it/s] # 边界适配器对目标域的背景proposals生成预测边界框并保存
Write to cache: logs/faster_rcnn_R_101_C4/voc/phase1/cache/feedback_bbox/.._datasets_VOC2012_trainval_bg.json
----------------------------------------------------
iter: 19  total_loss_s: 1.469  loss_cls_s: 1.071  loss_box_reg_s: 0.3292  loss_rpn_cls_s: 0.01793  loss_rpn_loc_s: 0.03063  loss_cls_t: 2.185  lr: 1.6141e-05  max_mem: 4074M
'''
total_loss_s:loss_cls_s + loss_box_reg_s + loss_rpn_cls_s + loss_rpn_loc_s
loss_cls_s:目标检测器对源域proposals预测类别的损失
loss_box_reg_s:目标检测器对源域proposals预测的边界框的损失
loss_cls_t:目标检测器对目标域预测类别的损失(以前面适配器生成的伪标签为真实标签)
lr:学习率
'''
----------------------------------------------------
OrderedDict([('bbox', {'AP': nan, 'AP50': nan, 'AP75': nan, 'class 0': 2.7624309392265194, 'class 1': nan, 'class 2': 0.0, 'class 3': 0.0, 'class 4': 0.641025641025641, 'class 5': nan, 'class 6': 2.2222222222222223})])
+---------------+--------------------+
|     class     |         AP         |
+---------------+--------------------+
|       AP      |        nan         |
|      AP50     |        nan         |
|      AP75     |        nan         |
|     class 0   | 2.7624309392265194 |
|     class 1   |        nan         |
|     class 2   |        0.0         |
|     class 3   |        0.0         |
|     class 4   | 0.641025641025641  |
|     class 5   |        nan         |
|     class 6   | 2.2222222222222223 |
+---------------+--------------------+
'''
目标检测器在目标域上的识别效果
'''

4. 对照论文绘制的训练流程

在这里插入图片描述

  • 1
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 8
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值