强化学习:Sarsa(λ)

Sarsa(λ)是强化学习中的多步更新算法,它通过λ值来平衡不同步的重要性,λ取值范围在0到1之间,0对应单步更新,1对应回合更新。相比于单步更新,Sarsa(λ)能更有效地利用每个步骤的信息进行学习。文章通过一个迷宫环境的示例展示了Sarsa(λ)的实战应用。
摘要由CSDN通过智能技术生成

   Sarsa (λ ) 是强化学习中基于 Sarsa 的一种提速方法。

1、Sarsa (λ ) 算法思想

   Q-Learning 和 Sarsa 都是在得到奖励后只更新上一步状态和动作对应的 Q 表值,是单步更新算法,也就是 Sarsa(0)。但是在得到当前奖励值之前所走的每一步(即一个轨迹)都多多少少和最终得到的奖励值有关,所以不应该只更新上一步状态对应的 Q 值。于是就有了多步更新算法——Sarsa(n)。当 n 的值为一个回合(episode)的步数时就变成了回合更新。对于多步更新的 Sarsa 算法我们用 Sarsa( λ ) 来统一表示,其中 λ 取值范围是 [ 0 , 1 ],其本质是一个衰减值。

   对比单步更新和回合更新, 可以看看回合更新的优势。
在这里插入图片描述

   如上图,虽然 单步更新 每一步都在更新,但是在没有获取宝藏的时,现在站着的这一步也没有得到任何更新,也就是直到获取宝藏时,才为获取到宝藏的上一步更新为:这一步很好,和获取宝藏是有关联的,而之前为了获取宝藏所走的所有步都被认为和获取宝藏没关系。
   回合更新 虽然要等到回合结束, 才开始对本回合所经历的所有步添加更新,但是所有步都是和宝藏有关系的,都是为了得到宝藏需要学习的步,所以每一个脚印在下回合被选择的几率又高了一些。在这种角度来看,回合更新似乎会有效率一些。
.
在这里插入图片描述
   我们看看使用单步更新的方法,但是同时记下之前的每一步这种情况。 可以想像,每走一步,就插上一个小旗子,这样就能清楚知道除了最近的一步,找到宝物时还需要更新哪些步了。不过,有时候情况可能没有这么乐观。在开始的几次, 因为完全没有头绪,可能在原地打转了很久后才找到宝藏,如上图所示。其中,重复的脚步对寻到宝藏有必要吗?所以,这正是 Sarsa( λ \lambda λ) 的意义。

在这里插入图片描述
   其实 λ \lambda λ 是一个衰变值,表示离宝藏越近的脚印越重要,越需要被好好的更新。和之前的奖励衰减值 γ \gamma γ 一样, λ \lambda λ 是脚步衰减值,都是一个在 0 和 1 之间的数。当 λ \lambda λ 取 0,就变成了 Sarsa 的单步更新,当 λ \lambda λ 取 1,就变成了回合更新,对所有步更新的力度都是一样。当 λ \lambda λ 在 0 和 1 之间,取值越大,表示离宝藏越近的步更新力度越大。这样就不用受限于单步更新的每次只能更新最近的一步,就可以更有效率的更新所有相关步了。

其算法如下图:
在这里插入图片描述

2、Sarsa( λ \lambda λ) 实战

环境

import numpy as np
import time
import sys
if sys.version_info.major == 2:
    import Tkinter as tk
else:
    import tkinter as tk


UNIT = 40   # pixels
MAZE_H = 4  # grid height
MAZE_W = 4  # grid width


class Maze(tk.Tk, object):
    def __init__(self):
        super(Maze, self).__init__()
        self.action_space = ['u', 'd', 'l', 'r']
        self.n_actions = len(self.action_space)
        self.title('maze')
        self.geometry('{0}x{1}'.format(MAZE_W * UNIT, MAZE_H * UNIT))
        self._build_maze()

    def _build_maze(self):
        self.canvas = tk.Canvas(self, bg='white',
                           height=MAZE_H * UNIT,
                           width=MAZE_W * UNIT)

        # create grids
        for c in range(0, MAZE_W * UNIT, UNIT):
            x0, y0, x1, y1 = c, 0, c, MAZE_H * UNIT
            self.canvas.create_line(x0, y0, x1, y1)
        for r in range(0, MAZE_H * UNIT, UNIT):
            x0, y0, x1, y1 = 0, r, MAZE_W * UNIT, r
            self.canvas.create_line(x0, y0, x1, y1)

        # create origin
        origin = np.array([20, 20])

        # hell
        hell1_center = origin + np.array([UNIT * 2, UNIT])
        self.hell1 = self.canvas.create_rectangle(
            hell1_center[0] - 15, hell1_center[1] - 15,
            hell1_center[0] + 15, hell1_center[1] + 15,
            fill='black')
        # hell
        hell2_center = origin + np.array([UNIT, UNIT * 2])
        self.hell2 = self.canvas.create_rectangle(
            hell2_center[0] - 15, hell2_center[1] - 15,
            hell2_center[0] + 15, hell2_center[1] + 15,
            fill='black')

        # create oval
        oval_center = origin + UNIT * 2
        self.oval = self.canvas.create_oval(
            oval_center[0] - 15, oval_center[1] - 15,
            oval_center[0] + 15, oval_center[1] + 15,
            fill='yellow')

        # create red rect
        self.rect = self.canvas.create_rectangle(
            origin[0] - 15, origin[1] - 15,
            origin[0] + 15, origin[1] + 15,
            fill='red')

        # pack all
        self.canvas.pack()

    def reset(self):
        self.update()
        time.sleep(0.5)
        self.canvas.delete(self.rect)
        origin = np.array([20, 20])
        self.rect = self.canvas.create_rectangle(
            origin[0] - 15, origin[1] - 15,
            origin[0] + 15, origin[1] + 15,
            fill='red')
        # return observation
        return self.canvas.coords(self.rect)

    def step(self, action):
        s = self.canvas.coords(self.rect)
        base_action = np.array([0, 0])
        if action == 0:   # up
            if s[1] > UNIT:
                base_action[1] -= UNIT
        elif action == 1:   # down
            if s[1] < (MAZE_H - 1) * UNIT:
                base_action[1] += UNIT
        elif action == 2:   # right
            if s[0] < (MAZE_W - 1) * UNIT:
                base_action[0] += UNIT
        elif action == 3:   # left
            if s[0] > UNIT:
                base_action[0] -= UNIT

        self.canvas.move(self.rect, base_action[0], base_action[1])  # move agent

        s_ = self.canvas.coords(self.rect)  # next state

        # reward function
        if s_ == self.canvas.coords(self.oval):
            reward = 1
            done = True
            s_ = 'terminal'
        elif s_ in [self.canvas.coords(self.hell1), self.canvas.coords(self.hell2)]:
            reward = -1
            done = True
            s_ = 'terminal'
        else:
            reward = 0
            done = False

        return s_, reward, done

    def render(self):
        time.sleep(0.05)
        self.update()

算法

import numpy as np
import pandas as pd


class RL(object):
    def __init__(self, action_space, learning_rate=0.01, reward_decay=0.9, e_greedy=0.9):
        self.actions = action_space  # a list
        self.lr = learning_rate
        self.gamma = reward_decay
        self.epsilon = e_greedy

        self.q_table = pd.DataFrame(columns=self.actions, dtype=np.float64)

    def check_state_exist(self, state):
        if state not in self.q_table.index:
            # append new state to q table
            self.q_table = self.q_table.append(
                pd.Series(
                    [0]*len(self.actions),
                    index=self.q_table.columns,
                    name=state,
                )
            )

    def choose_action(self, observation):
        self.check_state_exist(observation)
        # action selection
        if np.random.rand() < self.epsilon:
            # choose best action
            state_action = self.q_table.loc[observation, :]
            # some actions may have the same value, randomly choose on in these actions
            action = np.random.choice(state_action[state_action == np.max(state_action)].index)
        else:
            # choose random action
            action = np.random.choice(self.actions)
        return action

    def learn(self, *args):
        pass


# backward eligibility traces
class SarsaLambdaTable(RL):
    def __init__(self, actions, learning_rate=0.01, reward_decay=0.9, e_greedy=0.9, trace_decay=0.9):
        super(SarsaLambdaTable, self).__init__(actions, learning_rate, reward_decay, e_greedy)

        # backward view, eligibility trace.
        self.lambda_ = trace_decay
        self.eligibility_trace = self.q_table.copy()

    def check_state_exist(self, state):
        if state not in self.q_table.index:
            # append new state to q table
            to_be_append = pd.Series(
                    [0] * len(self.actions),
                    index=self.q_table.columns,
                    name=state,
                )
            self.q_table = self.q_table.append(to_be_append)

            # also update eligibility trace
            self.eligibility_trace = self.eligibility_trace.append(to_be_append)

    def learn(self, s, a, r, s_, a_):
        self.check_state_exist(s_)
        q_predict = self.q_table.loc[s, a]
        if s_ != 'terminal':
            q_target = r + self.gamma * self.q_table.loc[s_, a_]  # next state is not terminal
        else:
            q_target = r  # next state is terminal
        error = q_target - q_predict

        # increase trace amount for visited state-action pair

        # Method 1:
        # self.eligibility_trace.loc[s, a] += 1

        # Method 2:
        self.eligibility_trace.loc[s, :] *= 0
        self.eligibility_trace.loc[s, a] = 1

        # Q update
        self.q_table += self.lr * error * self.eligibility_trace

        # decay eligibility trace after update
        self.eligibility_trace *= self.gamma*self.lambda_

测试

from env import Maze
from Sarsa_brain import SarsaLambdaTable


def update():
    for episode in range(100):
        # initial observation
        observation = env.reset()

        # RL choose action based on observation
        action = RL.choose_action(str(observation))

        # 新回合, 清零
        RL.eligibility_trace *= 0

        while True:  # 开始回合
            # fresh env
            env.render()

            # RL take action and get next observation and reward
            observation_, reward, done = env.step(action)

            # RL choose action based on next observation
            action_ = RL.choose_action(str(observation_))

            # RL learn from this transition (s, a, r, s, a) ==> Sarsa
            RL.learn(str(observation), action, reward, str(observation_), action_)

            # swap observation and action
            observation = observation_
            action = action_

            # break while loop when end of this episode
            if done:
                break

    # end of game
    print('game over')
    env.destroy()

if __name__ == "__main__":
    env = Maze()
    RL = SarsaLambdaTable(actions=list(range(env.n_actions)))

    env.after(100, update)
    env.mainloop()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值