Hugging Face探索

1.找到网站

Hugging Face:

https://huggingface.co/

魔搭社区(国内):

ModelScope魔搭社区

2.模型选择

左边选择不同的task,右边出现对应task的模型。也可以按照平台、数据集、语言等进行选择。

选择一个模型。左侧是对模型的描述,下方通常会给出示例。

3.配置Google colab

首先新建一个文件夹,叫做colab,用于保存文件。然后点击Google colaboratory,进入。

将模型运行的硬件设置改为GPU。可以通过上图的磁盘等信息查看计算资源占用情况。

#输入以下命令查看计算资源
!nvidia-smi

#输入以下命令查看当前路径
!pwd

如果需要用到Google drive上的数据,那么:

import os
from google.colab import drive
drive.mount('/content/drive')

#切换路径
%cd /content/drive/MyDrive/colab  #或者其他文件夹

4.开始探索

首先下载transformers

!pip install transformers

先用给的例子尝试一下:

from transformers import ViTImageProcessor, ViTForImageClassification
from PIL import Image
import requests

url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)

processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224')
model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224')

inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
# model predicts one of the 1000 ImageNet classes
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])

输入的图片是:

生成的结果是:

又用了网上下载的图片试了试(上传到Google drive中):

from transformers import ViTImageProcessor, ViTForImageClassification
from PIL import Image
import requests

image = Image.open('/content/drive/MyDrive/0972dbcf6279001b88cc7f0f481ce864.jpg')
image = image.convert('RGB')
processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224')
model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224')

inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
# model predicts one of the 1000 ImageNet classes
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])

以及:

最初的尝试就到这里了!之后有机会再仔细了解一下!

### Hugging Face 使用指南和资源 #### 了解 Hugging Face 平台 Hugging Face 是一个专注于自然语言处理(NLP)和其他机器学习任务的强大平台[^1]。无论是通过网站界面还是编程接口,用户都能访问丰富的资源和服务。 #### 利用官方文档入门 对于初次使用者来说,《Hugging Face 入门指南》提供了详尽的操作说明和支持材料,帮助快速掌握基本功能并解决常见疑问。 #### 探索社区力量 Hugging Face 不仅是一个技术平台,更拥有活跃的开源社区。这里汇聚了大量的开发者和技术爱好者,他们积极分享自己的经验和见解,促进了整个生态系统的发展。特别是《AI 学习指南 HuggingFace 篇》,深入介绍了如何融入这个充满活力的社群环境,并参与到各种有意义的合作项目当中去[^2]。 #### 参加竞赛提升技能 为了进一步提高个人能力,可以尝试参加由 Hugging Face 主办的各种比赛活动。这些赛事不仅能够锻炼实际解决问题的能力,还能接触到行业内的前沿技术和最佳实践案例。例如,在准备过程中多关注论坛上的交流贴子以及 GitHub 上关于问题反馈的部分,从中获取宝贵的经验教训;同时借鉴以往优胜队伍所采用的方法论来指导自己更好地完成挑战目标[^3]。 ```python from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer # 加载预训练的情感分析模型 model_name = "distilbert-uncased-finetuned-2-english" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) # 创建情感分类器管道 classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) # 测试输入文本 text_to_analyze = ["I love using Hugging Face resources!", "This is so frustrating."] results = classifier(text_to_analyze) for result in results: print(f"label: {result['label']}, score: {round(result['score'], 4)}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值