前言
还有很多证明方法,等我学了再写 qwq
均值不等式
引理1:若 a ≥ 0 , b ≥ 0 a\ge 0,b\ge 0 a≥0,b≥0 ,则 ( a + b ) n ≥ a n + n a n − 1 b , n ∈ Z + (a+b)^n\ge a^n+na^{n-1}b,n\in \Z_+ (a+b)n≥an+nan−1b,n∈Z+
直接二项式展开,证明略
命题1:求证 ∑ i = 1 n a i n ≥ ∏ i = 1 n a i n \dfrac{\sum_{i=1}^{n}a_i}{n}\ge \sqrt[n]{\prod_{i=1}^na_i} n∑i=1nai≥n∏i=1nai
数学归纳法证明:原命题等价于 ( ∑ i = 1 n a i n ) n ≥ ∏ i = 1 n a i \left(\dfrac{\sum_{i=1}^{n}a_i}{n}\right)^n \ge \prod\limits_{i=1}^{n}a_i (n∑i=1nai)n≥i=1∏nai
设 n = k n=k n=k 时原不等式成立
不妨假设 ∀ i < j , a i < a j \forall i<j,a_i<a_j ∀i<j,ai<aj
记 S n = ∑ i = 1 n a i S_n = \sum\limits_{i=1}^{n}a_i Sn=i=1∑nai
当 n = k + 1 n=k+1 n=k+1 时,原不等式为
( S k + a k + 1 k + 1 ) k + 1 ≥ ∏ i = 1 k + 1 a i \left(\dfrac{S_k+a_{k+1}}{k+1}\right)^{k+1} \ge \prod\limits_{i=1}^{k+1}a_i (k+1Sk+ak+1)k+1≥i=1∏k+1ai
( S k k + k a k + 1 − S k k ( k + 1 ) ) k + 1 ≥ ∏ i = 1 k + 1 a i \left(\dfrac{S_k}{k}+\dfrac{ka_{k+1}-S_k}{k(k+1)}\right)^{k+1}\ge \prod\limits_{i=1}^{k+1}a_i (kSk+k(k+1)kak+1−Sk)k+1≥i=1∏k+1ai
由引理1可知 L H S ≥ ( S k k ) k + 1 + ( k + 1 ) ( S k k ) k k a k + 1 − S k k ( k + 1 ) LHS\ge \left(\dfrac{S_k}{k}\right)^{k+1}+(k+1)\left(\dfrac{S_k}{k}\right)^k\dfrac{ka_{k+1}-S_k}{k(k+1)} LHS≥(kSk)k+1+(k+1)(kSk)kk(k+1)kak+1−Sk
∵ a k + 1 = max 1 ≤ i ≤ k + 1 { a i } \because a_{k+1}=\max\limits_{1\le i \le k+1}\{a_i\} ∵ak+1=1≤i≤k+1max{ai}
∴ k a k + 1 − S k ≥ 0 \therefore ka_{k+1}-S_k\ge 0 ∴kak+1−Sk≥0
故 L H S ≥ ( S k k ) k × a k + 1 ≥ R H S LHS \ge \left(\dfrac{S_k}{k}\right)^{k}\times a_{k+1} \ge RHS LHS≥(kSk)k×ak+1≥RHS
故原命题得证
命题2:求证 ∑ i = 1 n a i 2 n ≥ ∑ i = 1 n a i n \sqrt{\dfrac{\sum_{i=1}^{n}a_i^2}{n}} \ge \dfrac{\sum_{i=1}^{n}a_i}{n} n∑i=1nai2≥n∑i=1nai
证明:令 c = ∑ i = 1 n a i n , x i = a i − c c = \dfrac{\sum_{i=1}^{n}a_i}{n},x_i=a_i-c c=n∑i=1nai,xi=ai−c
则 ∑ i = 1 n a i = ∑ i = 1 n x i + n c = ∑ i = 1 n x i + ∑ i = 1 n a i \sum_{i=1}^{n}a_i = \sum_{i=1}^{n}x_i+nc = \sum_{i=1}^{n}x_i+\sum_{i=1}^{n}a_i ∑i=1nai=∑i=1nxi+nc=∑i=1nxi+∑i=1nai
∴ ∑ i = 1 n x i = 0 \therefore \sum_{i=1}^{n}x_i = 0 ∴∑i=1nxi=0
∴ L H S = ∑ i = 1 n ( x i + c ) 2 n \therefore LHS=\sqrt{\dfrac{\sum_{i=1}^{n}\left(x_i+c\right)^2}{n}} ∴LHS=n∑i=1n(xi+c)2
= c 2 + ∑ i = 1 n x i 2 n ≥ c 2 = R H S = \sqrt{c^2+\dfrac{\sum_{i=1}^{n}x_i^2}{n}} \ge \sqrt{c^2} = RHS =c2+n∑i=1nxi2≥c2=RHS
故原命题得证
命题3:求证 ∏ i = 1 n a i n ≥ n ∑ i = 1 n a i − 1 \sqrt[n]{\prod_{i=1}^na_i} \ge \dfrac{n}{\sum_{i=1}^{n}a_i^{-1}} n∏i=1nai≥∑i=1nai−1n
证明:由命题1可知
∑ i = 1 n a i − 1 n ≥ ∏ i = 1 n a i − 1 n = 1 ∏ i = 1 n a i n \dfrac{\sum_{i=1}^{n}a_i^{-1}}{n} \ge \sqrt[n]{\prod_{i=1}^{n}a_i^{-1}} = \dfrac{1}{\sqrt[n]{\prod_{i=1}^{n}a_i}} n∑i=1nai−1≥n∏i=1nai−1=n∏i=1nai1
∴ ∏ i = 1 n a i n ≥ n ∑ i = 1 n a i − 1 \therefore \sqrt[n]{\prod_{i=1}^{n}a_i} \ge \dfrac{n}{\sum_{i=1}^{n}a_i^{-1}} ∴n∏i=1nai≥∑i=1nai−1n
故原命题得证
∴ \therefore ∴ 综上所述,可得结论(均值不等式)
n ∑ i = 1 n a i − 1 ≤ ∏ i = 1 n a i n ≤ ∑ i = 1 n a i n ≤ ∑ i = 1 n a i 2 n \dfrac{n}{\sum_{i=1}^{n}a_i^{-1}} \le \sqrt[n]{\prod_{i=1}^{n}a_i} \le \dfrac{\sum_{i=1}^{n}a_i}{n} \le \sqrt{\dfrac{\sum_{i=1}^{n}a_i^2}{n}} ∑i=1nai−1n≤n∏i=1nai≤n∑i=1nai≤n∑i=1nai2
当且仅当 a 1 = a 2 = . . . = a n a_1=a_2=...=a_n a1=a2=...=an 时等号成立
也就是
调和平均数不超过几何平均数不超过算术平均数不超过平方平均数