均值不等式及其证明

前言

还有很多证明方法,等我学了再写 qwq


均值不等式

引理1:若 a ≥ 0 , b ≥ 0 a\ge 0,b\ge 0 a0,b0 ,则 ( a + b ) n ≥ a n + n a n − 1 b , n ∈ Z + (a+b)^n\ge a^n+na^{n-1}b,n\in \Z_+ (a+b)nan+nan1b,nZ+

直接二项式展开,证明略


命题1:求证 ∑ i = 1 n a i n ≥ ∏ i = 1 n a i n \dfrac{\sum_{i=1}^{n}a_i}{n}\ge \sqrt[n]{\prod_{i=1}^na_i} ni=1naini=1nai

数学归纳法证明:原命题等价于 ( ∑ i = 1 n a i n ) n ≥ ∏ i = 1 n a i \left(\dfrac{\sum_{i=1}^{n}a_i}{n}\right)^n \ge \prod\limits_{i=1}^{n}a_i (ni=1nai)ni=1nai

n = k n=k n=k 时原不等式成立

不妨假设 ∀ i < j , a i < a j \forall i<j,a_i<a_j i<j,ai<aj

S n = ∑ i = 1 n a i S_n = \sum\limits_{i=1}^{n}a_i Sn=i=1nai

n = k + 1 n=k+1 n=k+1 时,原不等式为

( S k + a k + 1 k + 1 ) k + 1 ≥ ∏ i = 1 k + 1 a i \left(\dfrac{S_k+a_{k+1}}{k+1}\right)^{k+1} \ge \prod\limits_{i=1}^{k+1}a_i (k+1Sk+ak+1)k+1i=1k+1ai

( S k k + k a k + 1 − S k k ( k + 1 ) ) k + 1 ≥ ∏ i = 1 k + 1 a i \left(\dfrac{S_k}{k}+\dfrac{ka_{k+1}-S_k}{k(k+1)}\right)^{k+1}\ge \prod\limits_{i=1}^{k+1}a_i (kSk+k(k+1)kak+1Sk)k+1i=1k+1ai

由引理1可知 L H S ≥ ( S k k ) k + 1 + ( k + 1 ) ( S k k ) k k a k + 1 − S k k ( k + 1 ) LHS\ge \left(\dfrac{S_k}{k}\right)^{k+1}+(k+1)\left(\dfrac{S_k}{k}\right)^k\dfrac{ka_{k+1}-S_k}{k(k+1)} LHS(kSk)k+1+(k+1)(kSk)kk(k+1)kak+1Sk

∵ a k + 1 = max ⁡ 1 ≤ i ≤ k + 1 { a i } \because a_{k+1}=\max\limits_{1\le i \le k+1}\{a_i\} ak+1=1ik+1max{ai}

∴ k a k + 1 − S k ≥ 0 \therefore ka_{k+1}-S_k\ge 0 kak+1Sk0

L H S ≥ ( S k k ) k × a k + 1 ≥ R H S LHS \ge \left(\dfrac{S_k}{k}\right)^{k}\times a_{k+1} \ge RHS LHS(kSk)k×ak+1RHS

故原命题得证


命题2:求证 ∑ i = 1 n a i 2 n ≥ ∑ i = 1 n a i n \sqrt{\dfrac{\sum_{i=1}^{n}a_i^2}{n}} \ge \dfrac{\sum_{i=1}^{n}a_i}{n} ni=1nai2 ni=1nai

证明:令 c = ∑ i = 1 n a i n , x i = a i − c c = \dfrac{\sum_{i=1}^{n}a_i}{n},x_i=a_i-c c=ni=1nai,xi=aic

∑ i = 1 n a i = ∑ i = 1 n x i + n c = ∑ i = 1 n x i + ∑ i = 1 n a i \sum_{i=1}^{n}a_i = \sum_{i=1}^{n}x_i+nc = \sum_{i=1}^{n}x_i+\sum_{i=1}^{n}a_i i=1nai=i=1nxi+nc=i=1nxi+i=1nai

∴ ∑ i = 1 n x i = 0 \therefore \sum_{i=1}^{n}x_i = 0 i=1nxi=0

∴ L H S = ∑ i = 1 n ( x i + c ) 2 n \therefore LHS=\sqrt{\dfrac{\sum_{i=1}^{n}\left(x_i+c\right)^2}{n}} LHS=ni=1n(xi+c)2

= c 2 + ∑ i = 1 n x i 2 n ≥ c 2 = R H S = \sqrt{c^2+\dfrac{\sum_{i=1}^{n}x_i^2}{n}} \ge \sqrt{c^2} = RHS =c2+ni=1nxi2 c2 =RHS

故原命题得证


命题3:求证 ∏ i = 1 n a i n ≥ n ∑ i = 1 n a i − 1 \sqrt[n]{\prod_{i=1}^na_i} \ge \dfrac{n}{\sum_{i=1}^{n}a_i^{-1}} ni=1nai i=1nai1n

证明:由命题1可知

∑ i = 1 n a i − 1 n ≥ ∏ i = 1 n a i − 1 n = 1 ∏ i = 1 n a i n \dfrac{\sum_{i=1}^{n}a_i^{-1}}{n} \ge \sqrt[n]{\prod_{i=1}^{n}a_i^{-1}} = \dfrac{1}{\sqrt[n]{\prod_{i=1}^{n}a_i}} ni=1nai1ni=1nai1 =ni=1nai 1

∴ ∏ i = 1 n a i n ≥ n ∑ i = 1 n a i − 1 \therefore \sqrt[n]{\prod_{i=1}^{n}a_i} \ge \dfrac{n}{\sum_{i=1}^{n}a_i^{-1}} ni=1nai i=1nai1n

故原命题得证


∴ \therefore 综上所述,可得结论(均值不等式)

n ∑ i = 1 n a i − 1 ≤ ∏ i = 1 n a i n ≤ ∑ i = 1 n a i n ≤ ∑ i = 1 n a i 2 n \dfrac{n}{\sum_{i=1}^{n}a_i^{-1}} \le \sqrt[n]{\prod_{i=1}^{n}a_i} \le \dfrac{\sum_{i=1}^{n}a_i}{n} \le \sqrt{\dfrac{\sum_{i=1}^{n}a_i^2}{n}} i=1nai1nni=1nai ni=1naini=1nai2

当且仅当 a 1 = a 2 = . . . = a n a_1=a_2=...=a_n a1=a2=...=an 时等号成立

也就是

调和平均数不超过几何平均数不超过算术平均数不超过平方平均数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值