平均值不等式的证明
需要证明的结论:对任意
n
n
n个正数
a
1
,
a
2
,
⋯
,
a
n
a_1,a_2,\cdots,a_n
a1,a2,⋯,an,有
a
1
+
a
2
+
⋯
+
a
n
n
≥
a
1
a
2
⋯
a
n
n
≥
n
/
(
1
a
1
+
1
a
2
+
⋯
+
1
a
n
)
,
\frac{a_1+a_2+\cdots+a_n}{n}\ge \sqrt[n]{a_1 a_2\cdots a_n}\ge n\bigg/\left(\frac1{a_1}+\frac1{a_2}+\cdots+\frac1{a_n} \right),
na1+a2+⋯+an≥na1a2⋯an≥n/(a11+a21+⋯+an1),
等号当且仅当
a
1
,
⋯
,
a
n
a_1,\cdots,a_n
a1,⋯,an全部相等时成立。
先证明第一个不等式,当
n
=
2
n=2
n=2时,要证明
a
+
b
2
≥
a
b
\frac{a+b}2\ge\sqrt{ab}
2a+b≥ab,平方后等价于证明
(
a
−
b
)
2
≥
0
(a-b)^2 \ge0
(a−b)2≥0,这显然是成立的,于是因此有
a
1
+
a
2
2
+
a
3
+
a
4
2
2
≥
a
1
+
a
2
2
⋅
a
3
+
a
4
2
≥
a
1
a
2
a
3
a
4
,
\frac{\frac{a_1+a_2}{2}+\frac{a_3+a_4}{2}}2 \ge \sqrt{\frac{a_1+a_2}2\cdot\frac{a_3+a_4}2}\ge \sqrt{a_1a_2a_3a_4},
22a1+a2+2a3+a4≥2a1+a2⋅2a3+a4≥a1a2a3a4,
以此类推可以得到对于
n
=
2
k
,
k
∈
N
n=2^k,k\in \N
n=2k,k∈N的情形。
当
n
≠
2
k
n\ne 2^k
n=2k且
n
>
2
n>2
n>2时,取
l
∈
N
+
l\in\N^+
l∈N+,使
2
l
−
1
<
n
<
2
l
2^{l-1}<n<2^l
2l−1<n<2l,记
a
ˉ
=
a
1
a
2
⋯
a
n
n
,
\bar a=\sqrt[n]{a_1a_2\cdots a_n},
aˉ=na1a2⋯an,
在
a
1
,
⋯
,
a
n
a_1,\cdots,a_n
a1,⋯,an后面加上
(
2
l
−
n
)
(2^l-n)
(2l−n)个
a
ˉ
\bar a
aˉ,将其扩充成
2
l
2^l
2l个正数。对这
2
l
2^l
2l个正数应用不等式,得到
1
2
l
[
a
1
+
⋯
+
a
n
+
(
2
l
−
n
)
a
ˉ
]
≥
(
a
1
a
2
⋯
a
n
a
ˉ
2
l
−
n
)
−
1
2
l
=
a
ˉ
,
\frac{1}{2^l}[a_1+\cdots+a_n+(2^l -n)\bar a]\ge (a_1 a_2 \cdots a_n \bar a^{2^l -n})^{-\frac{1}{2^l}}=\bar a,
2l1[a1+⋯+an+(2l−n)aˉ]≥(a1a2⋯anaˉ2l−n)−2l1=aˉ,
对等式左边作整理,即
a
1
+
⋯
+
a
n
+
(
2
l
−
n
)
a
ˉ
2
l
=
a
1
+
⋯
+
a
n
2
l
+
a
ˉ
−
n
a
ˉ
2
l
≥
a
ˉ
\begin{aligned} &\frac{a_1+\cdots+a_n+(2^l-n)\bar a}{2^l}\\ =&\frac{a_1+\cdots+a_n}{2^l}+\bar a-\frac{n\bar a}{2^l}\ge \bar a\\ \end{aligned}
=2la1+⋯+an+(2l−n)aˉ2la1+⋯+an+aˉ−2lnaˉ≥aˉ
再整理
a
1
+
⋯
+
a
n
n
≥
a
ˉ
=
a
1
⋯
a
n
n
.
\frac{a_1+\cdots+a_n}n \ge \bar a=\sqrt[n]{a_1\cdots a_n}.
na1+⋯+an≥aˉ=na1⋯an.
就证得了原不等式对于任意正整数的情况。
将
1
a
1
,
⋯
,
1
a
n
\frac 1{a_1},\cdots,\frac 1{a_n}
a11,⋯,an1代入,就得到
1
a
n
+
⋯
+
1
a
n
n
≥
1
a
1
a
2
⋯
a
n
n
,
\frac{\frac1{a_n}+\cdots+\frac1{a_n}}{n}\ge \sqrt[n]{\frac{1}{a_1 a_2\cdots a_n}},
nan1+⋯+an1≥na1a2⋯an1,
由于
a
1
,
⋯
,
a
n
a_1,\cdots,a_n
a1,⋯,an都是正数,所以两边同时取倒数,得到
n
1
a
1
+
⋯
+
1
a
n
≤
a
1
a
2
⋯
a
n
n
.
\frac n{\frac 1{a_1}+\cdots+\frac1{a_n}}\le \sqrt[n]{a_1 a_2\cdots a_n}.
a11+⋯+an1n≤na1a2⋯an.