平均值不等式的证明

平均值不等式的证明

需要证明的结论:对任意 n n n个正数 a 1 , a 2 , ⋯   , a n a_1,a_2,\cdots,a_n a1,a2,,an,有
a 1 + a 2 + ⋯ + a n n ≥ a 1 a 2 ⋯ a n n ≥ n / ( 1 a 1 + 1 a 2 + ⋯ + 1 a n ) , \frac{a_1+a_2+\cdots+a_n}{n}\ge \sqrt[n]{a_1 a_2\cdots a_n}\ge n\bigg/\left(\frac1{a_1}+\frac1{a_2}+\cdots+\frac1{a_n} \right), na1+a2++anna1a2an n/(a11+a21++an1),
等号当且仅当 a 1 , ⋯   , a n a_1,\cdots,a_n a1,,an全部相等时成立。

先证明第一个不等式,当 n = 2 n=2 n=2时,要证明 a + b 2 ≥ a b \frac{a+b}2\ge\sqrt{ab} 2a+bab ,平方后等价于证明 ( a − b ) 2 ≥ 0 (a-b)^2 \ge0 (ab)20,这显然是成立的,于是因此有
a 1 + a 2 2 + a 3 + a 4 2 2 ≥ a 1 + a 2 2 ⋅ a 3 + a 4 2 ≥ a 1 a 2 a 3 a 4 , \frac{\frac{a_1+a_2}{2}+\frac{a_3+a_4}{2}}2 \ge \sqrt{\frac{a_1+a_2}2\cdot\frac{a_3+a_4}2}\ge \sqrt{a_1a_2a_3a_4}, 22a1+a2+2a3+a42a1+a22a3+a4 a1a2a3a4 ,
以此类推可以得到对于 n = 2 k , k ∈ N n=2^k,k\in \N n=2k,kN的情形。

n ≠ 2 k n\ne 2^k n=2k n > 2 n>2 n>2时,取 l ∈ N + l\in\N^+ lN+,使 2 l − 1 < n < 2 l 2^{l-1}<n<2^l 2l1<n<2l,记
a ˉ = a 1 a 2 ⋯ a n n , \bar a=\sqrt[n]{a_1a_2\cdots a_n}, aˉ=na1a2an ,
a 1 , ⋯   , a n a_1,\cdots,a_n a1,,an后面加上 ( 2 l − n ) (2^l-n) (2ln) a ˉ \bar a aˉ,将其扩充成 2 l 2^l 2l个正数。对这 2 l 2^l 2l个正数应用不等式,得到
1 2 l [ a 1 + ⋯ + a n + ( 2 l − n ) a ˉ ] ≥ ( a 1 a 2 ⋯ a n a ˉ 2 l − n ) − 1 2 l = a ˉ , \frac{1}{2^l}[a_1+\cdots+a_n+(2^l -n)\bar a]\ge (a_1 a_2 \cdots a_n \bar a^{2^l -n})^{-\frac{1}{2^l}}=\bar a, 2l1[a1++an+(2ln)aˉ](a1a2anaˉ2ln)2l1=aˉ,
对等式左边作整理,即
a 1 + ⋯ + a n + ( 2 l − n ) a ˉ 2 l = a 1 + ⋯ + a n 2 l + a ˉ − n a ˉ 2 l ≥ a ˉ \begin{aligned} &\frac{a_1+\cdots+a_n+(2^l-n)\bar a}{2^l}\\ =&\frac{a_1+\cdots+a_n}{2^l}+\bar a-\frac{n\bar a}{2^l}\ge \bar a\\ \end{aligned} =2la1++an+(2ln)aˉ2la1++an+aˉ2lnaˉaˉ
再整理
a 1 + ⋯ + a n n ≥ a ˉ = a 1 ⋯ a n n . \frac{a_1+\cdots+a_n}n \ge \bar a=\sqrt[n]{a_1\cdots a_n}. na1++anaˉ=na1an .
就证得了原不等式对于任意正整数的情况。


1 a 1 , ⋯   , 1 a n \frac 1{a_1},\cdots,\frac 1{a_n} a11,,an1代入,就得到
1 a n + ⋯ + 1 a n n ≥ 1 a 1 a 2 ⋯ a n n , \frac{\frac1{a_n}+\cdots+\frac1{a_n}}{n}\ge \sqrt[n]{\frac{1}{a_1 a_2\cdots a_n}}, nan1++an1na1a2an1 ,
由于 a 1 , ⋯   , a n a_1,\cdots,a_n a1,,an都是正数,所以两边同时取倒数,得到
n 1 a 1 + ⋯ + 1 a n ≤ a 1 a 2 ⋯ a n n . \frac n{\frac 1{a_1}+\cdots+\frac1{a_n}}\le \sqrt[n]{a_1 a_2\cdots a_n}. a11++an1nna1a2an .

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值