Group conv vs. Depthwise separable conv

本文介绍了分组卷积和深度可分离卷积的原理、效果及实现,并探讨了两者在轻量化模型中的应用。分组卷积通过减少参数量,增强滤波器之间的相关性,而深度可分离卷积则进一步将空间和通道分离,提高效率。这两种技术广泛应用于MobileNet、ShuffleNet等高效神经网络结构。
摘要由CSDN通过智能技术生成

本王有话说:这俩属于是做轻量化绕不开的经典工作,盘踞武林好多年,我们的目标学会并企图超越它。

分组卷积(Group conv)

paper

原理

分组卷积,即ResNeXt的亮点,受Inception和AlexNet的启发产生。Inception中提到,对于卷积来说,卷积核可以看做一个三维滤波器:通道维+空间维(特指特征图的W和H),常规的卷积操作其实就是实现通道相关性和空间相关性的联合映射。Inception提出假设: 卷积层通道间的相关性和空间相关性是可以退耦合的,将它们分开映射,能达到更好的效果。具体来说,不同卷积操作得到的特征图之间的耦合性较低,关注的主要特征不同,得到的特征图互为补充能够表示更完整的图像
如下图(b)所示,分组卷积将得到g个互补的特征,然后将得到的特征进行concat组合,作为最终的输出特征图。
在这里插入图片描述

具体操作:如上图(b)所示,将(a)中常规卷积的输入分成g组,每个卷积核也相应地分成g组,在对应的组内分别做卷积,每组卷积都生成一个feature map,共生成g个feature map。
假设 input.shape = [c1, H, W] 、 output.shape = [c2, H, W]、 kernel_size=h1*w1
(a)常规卷积参数量=h1 * w1 * c1 * c2
(b)分组卷积参数量=h1 * w1 * (c1/g) * (c2/g) * g = h1 * w1 * c1 * c2 / g,其中g为分组数量。

效果

官方观点:group conv能够增加 filter之间的对角相关性,而且能够减少训练参数,避免过拟合,类似于正则化效果。
本王认为:换个角度,用少量的参数量和运算量就能生成大量的feature map,大量的feature map意味着能

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值