基于遗传算法的 LQR 控制器优化设计(matlab实现)

5.1 理论基础

5.1.1 LQR控制

        假设线性时不变系统的状态方程模型为

  可以引入最优控制的性能指标,即设计一个输入量u,使得

为最小。其中,Q和R分别为状态变量和输入变量的加权矩阵,t,为控制作用的终止时间。矩阵S对控制系统的终值给出某种约束,这样的控制问题称为线性二次型(linear quadratic, LQ)最优控制问题。由线性二次型最优控制理论可知,若想最小化J,则控制信号应该为

 可见,最优控制信号将取决于状态变量x与Riccati微分方程的解P。可以看出,Riccati微分方程的求解是很困难的,而基于该方程解的控制器的实现就更困难,所以只考虑稳态问题这样的简单情况。在稳态的情况下,假定终止时间t→,这样会使得系统的状态渐进地趋于0。Riccati微分方程的解矩阵P将趋于常数矩阵,使得P=0。在这种情况下,Riccati微分方程将简

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程高兴

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值