5.1 理论基础
5.1.1 LQR控制
假设线性时不变系统的状态方程模型为
可以引入最优控制的性能指标,即设计一个输入量u,使得
为最小。其中,Q和R分别为状态变量和输入变量的加权矩阵,t,为控制作用的终止时间。矩阵S对控制系统的终值给出某种约束,这样的控制问题称为线性二次型(linear quadratic, LQ)最优控制问题。由线性二次型最优控制理论可知,若想最小化J,则控制信号应该为
可见,最优控制信号将取决于状态变量x与Riccati微分方程的解P。可以看出,Riccati微分方程的求解是很困难的,而基于该方程解的控制器的实现就更困难,所以只考虑稳态问题这样的简单情况。在稳态的情况下,假定终止时间t→,这样会使得系统的状态渐进地趋于0。Riccati微分方程的解矩阵P将趋于常数矩阵,使得P=0。在这种情况下,Riccati微分方程将简